Hilbert Number

Given a positive integer n, the task is to print nth Hilbert Number.

Hilbert Number: In mathematics, A Hilbert Number is a positive integer of the form 4*n + 1 , Where n is a non-negative integer.

The first few Hilbert numbers are –

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97

Examples :

Input : 5
Output: 21 ( i.e 4*5 + 1 ) 

Input : 9
Output: 37 (i.e 4*9 + 1 )



Approach:

  • The n-th Hilbert Number of the sequence can be obtained by putting the value of n in the formula 4*n + 1.

Below is the implementation of the above idea:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find
// nth hilbert Number
  
#include <bits/stdc++.h>
using namespace std;
  
// Utility function to return
// Nth Hilbert Number
long nthHilbertNumber(int n)
{
  
    return 4 * (n - 1) + 1;
}
  
// Driver code
int main()
{
  
    int n = 5;
  
    cout << nthHilbertNumber(n);
  
    return 0;
}

chevron_right


JAVA

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA program to find
// nth hilbert Number
  
class GFG {
    // Utility function to return
    // Nth Hilbert Number
    static long nthHilbertNumber(int n)
    {
  
        return 4 * (n - 1) + 1;
    }
  
    // Driver code
    public static void main(String[] args)
    {
  
        int n = 5;
  
        System.out.println(nthHilbertNumber(n));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find
# nth hilbert Number 
  
  
# Utility function to return 
# Nth Hilbert Number
def nthHilbertNumber( n):
          
    return 4*(n-1) + 1
      
# Driver code
  
n = 5
  
print(nthHilbertNumber(n))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find
// nth hilbert Number
  
using System;
class GFG {
    // Utility function to return
    // Nth Hilbert Number
    static long nthHilbertNumber(int n)
    {
  
        return 4 * (n - 1) + 1;
    }
  
    // Driver code
    public static void Main()
    {
  
        int n = 5;
  
        Console.WriteLine(nthHilbertNumber(n));
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Python3 program to find
// nth hilbert Number 
  
  
// Utility function to return 
// Nth Hilbert Number
function nthHilbertNumber($n)
{
          
    return 4*($n-1) + 1;
   
}
  
// Driver code
  
$n=5;
  
echo nthHilbertNumber($n);
  
?>

chevron_right


Output:

17


My Personal Notes arrow_drop_up

self motivated and passionate programmer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.