Skip to content
Related Articles

Related Articles

Improve Article
Highest power of a number that divides other number
  • Last Updated : 27 Apr, 2021

Given two numbers N and M, the task is to find the highest power of M that divides N. 
Note: M > 1 
Examples: 
 

Input: N = 48, M = 4 
Output:
48 % (4^2) = 0 
Input: N = 32, M = 20 
Output:
32 % (20^0) = 0 

Approach: Initially prime factorize both the numbers N and M and store the count of prime factors in freq1[] and freq2[] respectively for N and M. For every prime factor of M, check if its freq2[num] is greater than freq1[num] or not. If it is for any prime factor of M, then max power will be 0. Else the maximum power will be the minimum of all freq1[num] / freq2[num] for every prime factor of M
For a number N = 24, the prime factors will 2^3 * 3^1. Hence freq1[2] = 3 and freq1[3] = 1. 
Below is the implementation of the above approach: 
 

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to get the prime factors
// and its count of times it divides
void primeFactors(int n, int freq[])
{
 
    int cnt = 0;
 
    // Count the number of 2s that divide n
    while (n % 2 == 0) {
        cnt++;
        n = n / 2;
    }
 
    freq[2] = cnt;
 
    // n must be odd at this point. So we can skip
    // one element (Note i = i +2)
    for (int i = 3; i <= sqrt(n); i = i + 2) {
        cnt = 0;
 
        // While i divides n, count i and divide n
        while (n % i == 0) {
            cnt++;
            n = n / i;
        }
 
        freq[i] = cnt;
    }
 
    // This condition is to handle the case when n
    // is a prime number greater than 2
    if (n > 2)
        freq[n] = 1;
}
 
// Function to return the highest power
int getMaximumPower(int n, int m)
{
 
    // Initialize two arrays
    int freq1[n + 1], freq2[m + 1];
 
    memset(freq1, 0, sizeof freq1);
    memset(freq2, 0, sizeof freq2);
 
    // Get the prime factors of n and m
    primeFactors(n, freq1);
    primeFactors(m, freq2);
 
    int maxi = 0;
 
    // Iterate and find the maximum power
    for (int i = 2; i <= m; i++) {
 
        // If i not a prime factor of n and m
        if (freq1[i] == 0 && freq2[i] == 0)
            continue;
 
        // If i is a prime factor of n and m
        // If count of i dividing m is more
        // than i dividing n, then power will be 0
        if (freq2[i] > freq1[i])
            return 0;
 
        // If i is a prime factor of M
        if (freq2[i]) {
 
            // get the maximum power
            maxi = max(maxi, freq1[i] / freq2[i]);
        }
    }
 
    return maxi;
}
 
// Drivers code
int main()
{
    int n = 48, m = 4;
    cout << getMaximumPower(n, m);
    return 0;
}

Java




// Java program to implement
// the above approach
 
class GFG
{
 
// Function to get the prime factors
// and its count of times it divides
static void primeFactors(int n, int freq[])
{
 
    int cnt = 0;
 
    // Count the number of 2s that divide n
    while (n % 2 == 0)
    {
        cnt++;
        n = n / 2;
    }
 
    freq[2] = cnt;
 
    // n must be odd at this point. So we can skip
    // one element (Note i = i +2)
    for (int i = 3; i <= Math.sqrt(n); i = i + 2)
    {
        cnt = 0;
 
        // While i divides n, count i and divide n
        while (n % i == 0)
        {
            cnt++;
            n = n / i;
        }
 
        freq[i] = cnt;
    }
 
    // This condition is to handle the case when n
    // is a prime number greater than 2
    if (n > 2)
        freq[n] = 1;
}
 
// Function to return the highest power
static int getMaximumPower(int n, int m)
{
 
    // Initialize two arrays
    int freq1[] = new int[n + 1], freq2[] = new int[m + 1];
 
    // Get the prime factors of n and m
    primeFactors(n, freq1);
    primeFactors(m, freq2);
 
    int maxi = 0;
 
    // Iterate and find the maximum power
    for (int i = 2; i <= m; i++)
    {
 
        // If i not a prime factor of n and m
        if (freq1[i] == 0 && freq2[i] == 0)
            continue;
 
        // If i is a prime factor of n and m
        // If count of i dividing m is more
        // than i dividing n, then power will be 0
        if (freq2[i] > freq1[i])
            return 0;
 
        // If i is a prime factor of M
        if (freq2[i] != 0)
        {
 
            // get the maximum power
            maxi = Math.max(maxi, freq1[i] / freq2[i]);
        }
    }
 
    return maxi;
}
 
// Drivers code
public static void main(String[] args)
{
    int n = 48, m = 4;
    System.out.println(getMaximumPower(n, m));
 
}
}
 
// This code contributed by Rajput-Ji

Python 3




import math
 
# Python program to implement
# the above approach
 
# Function to get the prime factors
# and its count of times it divides
def primeFactors(n, freq):
    cnt = 0
 
    # Count the number of 2s that divide n
    while n % 2 == 0:
        cnt = cnt + 1
        n = int(n // 2)
 
    freq[2] = cnt
 
    # n must be odd at this point. So we can skip
    # one element (Note i = i+2)
    i=3
    while i<=math.sqrt(n):
        cnt = 0
 
        # While i divides n, count i and divide n
        while (n % i == 0):
            cnt = cnt+1
            n = int(n // i)
             
        freq[int(i)] = cnt
        i=i + 2
         
    # This condition is to handle the case when n
    # is a prime number greater than 2
    if (n > 2):
        freq[int(n)] = 1
 
 
# Function to return the highest power
def getMaximumPower(n, m):
 
    # Initialize two arrays
    freq1 = [0] * (n + 1)
    freq2 = [0] * (m + 1)
 
 
    # Get the prime factors of n and m
    primeFactors(n, freq1)
    primeFactors(m, freq2)
 
    maxi = 0
 
    # Iterate and find the maximum power
    i = 2
    while i <= m:
 
        # If i not a prime factor of n and m
        if (freq1[i] == 0 and freq2[i] == 0):
            i = i + 1
            continue
 
        # If i is a prime factor of n and m
        # If count of i dividing m is more
        # than i dividing n, then power will be 0
        if (freq2[i] > freq1[i]):
            return 0
 
        # If i is a prime factor of M
        if (freq2[i]):
 
            # get the maximum power
            maxi = max(maxi, int(freq1[i] // freq2[i]))
         
        i = i + 1
     
 
    return maxi
 
 
# Drivers code
n = 48
m = 4
print(getMaximumPower(n, m))
 
# This code is contributed by Shashank_Sharma

C#




// C# program to implement
// the above approach
using System;
 
class GFG
{
 
// Function to get the prime factors
// and its count of times it divides
static void primeFactors(int n, int []freq)
{
 
    int cnt = 0;
 
    // Count the number of 2s that divide n
    while (n % 2 == 0)
    {
        cnt++;
        n = n / 2;
    }
 
    freq[2] = cnt;
 
    // n must be odd at this point. So we can skip
    // one element (Note i = i +2)
    for (int i = 3; i <= Math.Sqrt(n); i = i + 2)
    {
        cnt = 0;
 
        // While i divides n, count i and divide n
        while (n % i == 0)
        {
            cnt++;
            n = n / i;
        }
 
        freq[i] = cnt;
    }
 
    // This condition is to handle the case when n
    // is a prime number greater than 2
    if (n > 2)
        freq[n] = 1;
}
 
// Function to return the highest power
static int getMaximumPower(int n, int m)
{
 
    // Initialize two arrays
    int []freq1 = new int[n + 1];int []freq2 = new int[m + 1];
 
    // Get the prime factors of n and m
    primeFactors(n, freq1);
    primeFactors(m, freq2);
 
    int maxi = 0;
 
    // Iterate and find the maximum power
    for (int i = 2; i <= m; i++)
    {
 
        // If i not a prime factor of n and m
        if (freq1[i] == 0 && freq2[i] == 0)
            continue;
 
        // If i is a prime factor of n and m
        // If count of i dividing m is more
        // than i dividing n, then power will be 0
        if (freq2[i] > freq1[i])
            return 0;
 
        // If i is a prime factor of M
        if (freq2[i] != 0)
        {
 
            // get the maximum power
            maxi = Math.Max(maxi, freq1[i] / freq2[i]);
        }
    }
 
    return maxi;
}
 
// Drivers code
public static void Main(String[] args)
{
    int n = 48, m = 4;
    Console.WriteLine(getMaximumPower(n, m));
 
}
}
 
// This code has been contributed by 29AjayKumar

PHP




<?php
// PHP program to implement
// the above approach
 
 
// Function to get the prime factors
// and its count of times it divides
function primeFactors($n, $freq)
{
 
    $cnt = 0;
 
    // Count the number of 2s that divide n
    while ($n % 2 == 0)
    {
        $cnt++;
        $n = floor($n / 2);
    }
 
    $freq[2] = $cnt;
 
    // n must be odd at this point. So we can skip
    // one element (Note i = i +2)
    for ($i = 3; $i <= sqrt($n); $i = $i + 2)
    {
        $cnt = 0;
 
        // While i divides n, count i and divide n
        while ($n % $i == 0)
        {
            $cnt++;
            $n = floor($n / $i);
        }
 
        $freq[$i] = $cnt;
    }
 
    // This condition is to handle the case when n
    // is a prime number greater than 2
    if ($n > 2)
        $freq[$n] = 1;
     
    return $freq ;
}
 
// Function to return the highest power
function getMaximumPower($n, $m)
{
 
    $freq1 = array_fill(0,$n + 1,0);
    $freq2 = array_fill(0,$m + 1,0);
 
    // Get the prime factors of n and m
    $freq1 = primeFactors($n, $freq1);
    $freq2 = primeFactors($m, $freq2);
 
    $maxi = 0;
 
    // Iterate and find the maximum power
    for ($i = 2; $i <= $m; $i++)
    {
 
        // If i not a prime factor of n and m
        if ($freq1[$i] == 0 && $freq2[$i] == 0)
            continue;
 
        // If i is a prime factor of n and m
        // If count of i dividing m is more
        // than i dividing n, then power will be 0
        if ($freq2[$i] > $freq1[$i])
            return 0;
 
        // If i is a prime factor of M
        if ($freq2[$i])
        {
 
            // get the maximum power
            $maxi = max($maxi, floor($freq1[$i] / $freq2[$i]));
        }
    }
 
    return $maxi;
}
 
    // Drivers code
    $n = 48; $m = 4;
    echo getMaximumPower($n, $m);
 
    // This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to get the prime factors
// and its count of times it divides
function primeFactors(n, freq)
{
 
    var cnt = 0;
 
    // Count the number of 2s that divide n
    while (n % 2 == 0) {
        cnt++;
        n = n / 2;
    }
 
    freq[2] = cnt;
    var i;
    // n must be odd at this point. So we can skip
    // one element (Note i = i +2)
    for (i = 3; i <= Math.sqrt(n); i = i + 2) {
        cnt = 0;
 
        // While i divides n, count i and divide n
        while (n % i == 0) {
            cnt++;
            n = n / i;
        }
 
        freq[i] = cnt;
    }
 
    // This condition is to handle the case when n
    // is a prime number greater than 2
    if (n > 2)
        freq[n] = 1;
}
 
// Function to return the highest power
function getMaximumPower(n, m)
{
 
    // Initialize two arrays
    var freq1 = new Array(n+1);
    var freq2 = new Array(m+1);
 
    // Get the prime factors of n and m
    primeFactors(n, freq1);
    primeFactors(m, freq2);
 
    var maxi = 0;
 
    // Iterate and find the maximum power
    for(i = 2; i <= m; i++) {
 
        // If i not a prime factor of n and m
        if (freq1[i] == 0 && freq2[i] == 0)
            continue;
 
        // If i is a prime factor of n and m
        // If count of i dividing m is more
        // than i dividing n, then power will be 0
        if (freq2[i] > freq1[i])
            return 0;
 
        // If i is a prime factor of M
        if (freq2[i]) {
 
            // get the maximum power
            maxi = Math.max(maxi, freq1[i]/freq2[i]);
        }
    }
 
    return maxi;
}
 
// Drivers code
    var n = 48, m = 4;
    document.write(getMaximumPower(n, m));
 
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :