# High-Performance Array Operations with Cython | Set 1

• Last Updated : 29 Mar, 2019

Although libraries like NumPy can perform high-performance array processing functions to operate on arrays. But Cython can also work really well. But how ?

Code #1 : Cython function for clipping the values in a simple 1D array of doubles

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

 `# work.pyx (Cython file)``cimport cython`` ` `@cython``.boundscheck(``False``)``@cython``.wraparound(``False``)`` ` `cpdef clip(double[:] a, double ``min``, double ``max``, double[:] out):`` ` `    ``'''``    ``Clip the values in a to be between ``    ``min and max. Result in out``    ``'''``    ``if` `min` `> ``max``:``        ``raise` `ValueError(``"min must be <= max"``)``    ` `    ``if` `a.shape[``0``] !``=` `out.shape[``0``]:``        ``raise` `ValueError(``"input and output arrays must be the same size"``)``     ` `    ``for` `i ``in` `range``(a.shape[``0``]):``        ``if` `a[i] < ``min``:``            ``out[i] ``=` `min``        ``elif` `a[i] > ``max``:``            ``out[i] ``=` `max``        ``else``:``            ``out[i] ``=` `a[i]`

`work.py` file is required to compile and build the extension.

Code #2 :

 `# importing libraries``from` `distutils.core ``import` `setup``from` `distutils.extension ``import` `Extension``from` `Cython.Distutils ``import` `build_ext`` ` `ext_modules ``=` `[Extension(``        ``'sample'``, ``        ``[``'sample.pyx'``])]`` ` `setup(name ``=` `'Sample app'``, ``      ``cmdclass ``=` `{``'build_ext'``: build_ext}, ``      ``ext_modules ``=` `ext_modules)`

After performing the task above, now we can check the working of resulting function clips arrays, with many different kinds of array objects.

Code #3 : Working of Clipping Array.

 `# array module example``import` `work``import` `array``import` `numpy`` ` `arr ``=` `array.array(``'d'``, [``1``, ``-``3``, ``4``, ``7``, ``2``, ``0``])``print` `(``"Array : "``, arr)`` ` `# Clipping the array``work.clip(arr, ``1``, ``4``, arr)``print` `(``"\nClipping array : "``, arr)`` ` `# numpy example``arr2 ``=` `numpy.random.uniform(``-``10``, ``10``, size ``=` `1000000``)``print` `(``"\narr2 : \n"``, arr2)`` ` `arr3 ``=` `numpy.zeros_like(arr2)``print` `(``"\narr3 : \n"``, arr3)`` ` `work.clip(arr2, ``-``5``, ``5``, arr3)``print` `(``"\nClipping arr3 : \n"``, ar3)``print` `(``"\nMinimum in arr3 : "``, ``min``(arr3))``print` `(``"\nMaximum in arr3 : "``, ``min``(arr3))`

Output :

```Array : array('d', [1.0, -3.0, 4.0, 7.0, 2.0, 0.0])

Clipping array : array('d', [1.0, 1.0, 4.0, 4.0, 2.0, 1.0])

arr2 :
[-9.55546017, 7.45599334, 0.69248932, ..., 0.69583148, -3.86290931, 2.37266888]

arr3 : array([ 0., 0., 0., ..., 0., 0., 0.])

Clipping arr3 :
[-5., 5., 0.69248932, ..., 0.69583148, -3.86290931, 2.37266888]

Minimum in arr3 : 5.0

Maximum in arr3 : 5.0
```

My Personal Notes arrow_drop_up