# Hexacontagon Number

Given a number **N**, the task is to find **N ^{th}** Hexacontagon number.

A Hexacontagon number is class of figurate number. It has 60 – sided polygon called hexacontagon. The N-th hexacontagon number count’s the 60 number of dots and all others dots are surrounding with a common sharing corner and make a pattern. The first few hexacontagonol numbers are

1, 60, 177, 352 …

**Examples:**

Input:N = 2Output:60Explanation:

The second hexacontagonol number is 60.Input:N = 3Output:177

**Approach:** The N-th hexacontagon number is given by the formula:

- Nth term of s sided polygon =

- Therefore Nth term of 60 sided polygon is

Below is the implementation of the above approach:

## C++

`// C++ program for above approach` `#include <iostream>` `using` `namespace` `std;` `// Finding the nth hexacontagon number` `int` `hexacontagonNum(` `int` `n)` `{` ` ` `return` `(58 * n * n - 56 * n) / 2;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 3;` ` ` `cout << ` `"3rd hexacontagon Number is = "` ` ` `<< hexacontagonNum(n);` ` ` `return` `0;` `}` `// This code is contributed by shubhamsingh10` |

## C

`// C program for above approach` `#include <stdio.h>` `#include <stdlib.h>` `// Finding the nth hexacontagon Number` `int` `hexacontagonNum(` `int` `n)` `{` ` ` `return` `(58 * n * n - 56 * n) / 2;` `}` `// Driver program to test above function` `int` `main()` `{` ` ` `int` `n = 3;` ` ` `printf` `(` `"3rd hexacontagon Number is = %d"` `,` ` ` `hexacontagonNum(n));` ` ` `return` `0;` `}` |

## Java

`// Java program for above approach` `class` `GFG{` ` ` `// Finding the nth hexacontagon number` `public` `static` `int` `hexacontagonNum(` `int` `n)` `{` ` ` `return` `(` `58` `* n * n - ` `56` `* n) / ` `2` `;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `3` `;` ` ` `System.out.println(` `"3rd hexacontagon Number is = "` `+` ` ` `hexacontagonNum(n));` `}` `}` `// This code is contributed by divyeshrabadiya07 ` |

## Python3

`# Python3 program for above approach` `# Finding the nth hexacontagon Number` `def` `hexacontagonNum(n):` ` ` `return` `(` `58` `*` `n ` `*` `n ` `-` `56` `*` `n) ` `/` `/` `2` `# Driver Code` `n ` `=` `3` `print` `(` `"3rd hexacontagon Number is = "` `,` ` ` `hexacontagonNum(n));` `# This code is contributed by divyamohan123` |

## C#

`// C# program for above approach` `using` `System;` `class` `GFG{` ` ` `// Finding the nth hexacontagon number` `public` `static` `int` `hexacontagonNum(` `int` `n)` `{` ` ` `return` `(58 * n * n - 56 * n) / 2;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `int` `n = 3;` ` ` `Console.Write(` `"3rd hexacontagon Number is = "` `+` ` ` `hexacontagonNum(n));` `}` `}` `// This code is contributed by Code_Mech` |

## Javascript

`<script>` `// Javascript program for above approach` `// Finding the nth hexacontagon number` `function` `hexacontagonNum(n)` `{` ` ` `return` `(58 * n * n - 56 * n) / 2;` `}` `// Driver code` `var` `n = 3;` `document.write(` `"3rd hexacontagon Number is = "` `+hexacontagonNum(n));` `</script>` |

**Output:**

3rd hexacontagon Number is = 177

**Time Complexity: **O(1)

**Auxiliary Space: **O(1)

**Reference:** https://en.wikipedia.org/wiki/Hexacontagon