We are given a tree of size n as array parent[0..n-1] where every index i in the parent[] represents a node and the value at i represents the immediate parent of that node. For root node value will be -1. Find the height of the generic tree given the parent links.
Examples:
Input : parent[] = {-1, 0, 0, 0, 3, 1, 1, 2} Output : 2
Input : parent[] = {-1, 0, 1, 2, 3} Output : 4
Approach 1:
One solution is to traverse up the tree from the node till the root node is reached with node value -1. While Traversing for each node stores maximum path length.
The Time Complexity of this solution is O(n^2).
Approach 2:
Build graph for N-ary Tree in O(n) time and apply BFS on the stored graph in O(n) time and while doing BFS store maximum reached level. This solution does two iterations to find the height of N-ary tree.
C++
// C++ code to find height of N-ary // tree in O(n) #include <bits/stdc++.h> #define MAX 1001 using namespace std; // Adjacency list to // store N-ary tree vector< int > adj[MAX]; // Build tree in tree in O(n) int build_tree( int arr[], int n) { int root_index = 0; // Iterate for all nodes for ( int i = 0; i < n; i++) { // if root node, store index if (arr[i] == -1) root_index = i; else { adj[i].push_back(arr[i]); adj[arr[i]].push_back(i); } } return root_index; } // Applying BFS int BFS( int start) { // map is used as visited array map< int , int > vis; queue<pair< int , int > > q; int max_level_reached = 0; // height of root node is zero q.push({ start, 0 }); // p.first denotes node in adjacency list // p.second denotes level of p.first pair< int , int > p; while (!q.empty()) { p = q.front(); vis[p.first] = 1; // store the maximum level reached max_level_reached = max(max_level_reached, p.second); q.pop(); for ( int i = 0; i < adj[p.first].size(); i++) // adding 1 to previous level // stored on node p.first // which is parent of node adj[p.first][i] // if adj[p.first][i] is not visited if (!vis[adj[p.first][i]]) q.push({ adj[p.first][i], p.second + 1 }); } return max_level_reached; } // Driver Function int main() { // node 0 to node n-1 int parent[] = { -1, 0, 1, 2, 3 }; // Number of nodes in tree int n = sizeof (parent) / sizeof (parent[0]); int root_index = build_tree(parent, n); int ma = BFS(root_index); cout << "Height of N-ary Tree=" << ma; return 0; } |
Python3
# Python3 code to find height # of N-ary tree in O(n) from collections import deque MAX = 1001 # Adjacency list to # store N-ary tree adj = [[] for i in range ( MAX )] # Build tree in tree in O(n) def build_tree(arr, n): root_index = 0 # Iterate for all nodes for i in range (n): # if root node, store # index if (arr[i] = = - 1 ): root_index = i else : adj[i].append(arr[i]) adj[arr[i]].append(i) return root_index # Applying BFS def BFS(start): # map is used as visited # array vis = {} q = deque() max_level_reached = 0 # height of root node is # zero q.append([start, 0 ]) # p.first denotes node in # adjacency list # p.second denotes level of # p.first p = [] while ( len (q) > 0 ): p = q.popleft() vis[p[ 0 ]] = 1 # store the maximum level # reached max_level_reached = max (max_level_reached, p[ 1 ]) for i in range ( len (adj[p[ 0 ]])): # adding 1 to previous level # stored on node p.first # which is parent of node # adj[p.first][i] # if adj[p.first][i] is not visited if (adj[p[ 0 ]][i] not in vis ): q.append([adj[p[ 0 ]][i], p[ 1 ] + 1 ]) return max_level_reached # Driver code if __name__ = = '__main__' : # node 0 to node n-1 parent = [ - 1 , 0 , 1 , 2 , 3 ] # Number of nodes in tree n = len (parent) root_index = build_tree(parent, n) ma = BFS(root_index) print ( "Height of N-ary Tree=" , ma) # This code is contributed by Mohit Kumar 29 |
Height of N-ary Tree=4
The Time Complexity of this solution is O(2n) which converges to O(n) for very large n.
Approach 3:
We can find the height of the N-ary Tree in only one iteration. We visit nodes from 0 to n-1 iteratively and mark the unvisited ancestors recursively if they are not visited before till we reach a node which is visited, or we reach the root node. If we reach the visited node while traversing up the tree using parent links, then we use its height and will not go further in recursion.
Explanation For Example 1::
For node 0: Check for Root node is true,
Return 0 as height, Mark node 0 as visited
For node 1: Recur for an immediate ancestor, i.e 0, which is already visited
So, Use its height and return height(node 0) +1
Mark node 1 as visited
For node 2: Recur for an immediate ancestor, i.e 0, which is already visited
So, Use its height and return height(node 0) +1
Mark node 2 as visited
For node 3: Recur for an immediate ancestor, i.e 0, which is already visited
So, Use its height and return height(node 0) +1
Mark node 3 as visited
For node 4: Recur for an immediate ancestor, i.e 3, which is already visited
So, Use its height and return height(node 3) +1
Mark node 3 as visited
For node 5: Recur for an immediate ancestor, i.e 1, which is already visited
So, Use its height and return height(node 1) +1
Mark node 5 as visited
For node 6: Recur for an immediate ancestor, i.e 1, which is already visited
So, Use its height and return height(node 1) +1
Mark node 6 as visited
For node 7: Recur for an immediate ancestor, i.e 2, which is already visited
So, Use its height and return height(node 2) +1
Mark node 7 as visited
Hence, we processed each node in the N-ary tree only once.
C++
// C++ code to find height of N-ary // tree in O(n) (Efficient Approach) #include <bits/stdc++.h> using namespace std; // Recur For Ancestors of node and // store height of node at last int fillHeight( int p[], int node, int visited[], int height[]) { // If root node if (p[node] == -1) { // mark root node as visited visited[node] = 1; return 0; } // If node is already visited if (visited[node]) return height[node]; // Visit node and calculate its height visited[node] = 1; // recur for the parent node height[node] = 1 + fillHeight(p, p[node], visited, height); // return calculated height for node return height[node]; } int findHeight( int parent[], int n) { // To store max height int ma = 0; // To check whether or not node is visited before int visited[n]; // For Storing Height of node int height[n]; memset (visited, 0, sizeof (visited)); memset (height, 0, sizeof (height)); for ( int i = 0; i < n; i++) { // If not visited before if (!visited[i]) height[i] = fillHeight(parent, i, visited, height); // store maximum height so far ma = max(ma, height[i]); } return ma; } // Driver Function int main() { int parent[] = { -1, 0, 0, 0, 3, 1, 1, 2 }; int n = sizeof (parent) / sizeof (parent[0]); cout << "Height of N-ary Tree = " << findHeight(parent, n); return 0; } |
Java
// Java code to find height of N-ary // tree in O(n) (Efficient Approach) import java.util.*; class GFG { // Recur For Ancestors of node and // store height of node at last static int fillHeight( int p[], int node, int visited[], int height[]) { // If root node if (p[node] == - 1 ) { // mark root node as visited visited[node] = 1 ; return 0 ; } // If node is already visited if (visited[node] == 1 ) return height[node]; // Visit node and calculate its height visited[node] = 1 ; // recur for the parent node height[node] = 1 + fillHeight(p, p[node], visited, height); // return calculated height for node return height[node]; } static int findHeight( int parent[], int n) { // To store max height int ma = 0 ; // To check whether or not node is visited before int []visited = new int [n]; // For Storing Height of node int []height = new int [n]; for ( int i = 0 ; i < n; i++) { visited[i] = 0 ; height[i] = 0 ; } for ( int i = 0 ; i < n; i++) { // If not visited before if (visited[i] != 1 ) height[i] = fillHeight(parent, i, visited, height); // store maximum height so far ma = Math.max(ma, height[i]); } return ma; } // Driver Code public static void main(String[] args) { int parent[] = { - 1 , 0 , 0 , 0 , 3 , 1 , 1 , 2 }; int n = parent.length; System.out.println( "Height of N-ary Tree = " + findHeight(parent, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 code to find height of N-ary # tree in O(n) (Efficient Approach) # Recur For Ancestors of node and # store height of node at last def fillHeight(p, node, visited, height): # If root node if (p[node] = = - 1 ): # mark root node as visited visited[node] = 1 return 0 # If node is already visited if (visited[node]): return height[node] # Visit node and calculate its height visited[node] = 1 # recur for the parent node height[node] = 1 + fillHeight(p, p[node], visited, height) # return calculated height for node return height[node] def findHeight(parent, n): # To store max height ma = 0 # To check whether or not node is # visited before visited = [ 0 ] * n # For Storing Height of node height = [ 0 ] * n for i in range (n): # If not visited before if ( not visited[i]): height[i] = fillHeight(parent, i, visited, height) # store maximum height so far ma = max (ma, height[i]) return ma # Driver Code if __name__ = = '__main__' : parent = [ - 1 , 0 , 0 , 0 , 3 , 1 , 1 , 2 ] n = len (parent) print ( "Height of N-ary Tree =" , findHeight(parent, n)) # This code is contributed by PranchalK |
C#
// C# code to find height of N-ary // tree in O(n) (Efficient Approach) using System; class GFG { // Recur For Ancestors of node and // store height of node at last static int fillHeight( int []p, int node, int []visited, int []height) { // If root node if (p[node] == -1) { // mark root node as visited visited[node] = 1; return 0; } // If node is already visited if (visited[node] == 1) return height[node]; // Visit node and calculate its height visited[node] = 1; // recur for the parent node height[node] = 1 + fillHeight(p, p[node], visited, height); // return calculated height for node return height[node]; } static int findHeight( int []parent, int n) { // To store max height int ma = 0; // To check whether or not // node is visited before int []visited = new int [n]; // For Storing Height of node int []height = new int [n]; for ( int i = 0; i < n; i++) { visited[i] = 0; height[i] = 0; } for ( int i = 0; i < n; i++) { // If not visited before if (visited[i] != 1) height[i] = fillHeight(parent, i, visited, height); // store maximum height so far ma = Math.Max(ma, height[i]); } return ma; } // Driver Code public static void Main(String[] args) { int []parent = { -1, 0, 0, 0, 3, 1, 1, 2 }; int n = parent.Length; Console.WriteLine( "Height of N-ary Tree = " + findHeight(parent, n)); } } // This code contributed by Rajput-Ji |
Height of N-ary Tree = 2
Time Complexity: O(n)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.