Skip to content
Related Articles

Related Articles

Hamming in Numpy

Improve Article
Save Article
  • Last Updated : 22 Jul, 2021
Improve Article
Save Article

The Hamming window is a taper formed by using a weighted cosine

Parameters(numpy.hamming(M)): 

M : int Number of points in the output window.
    If zero or less, an empty array is returned.

Returns: 
out : array

The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
Example:




import numpy as np 
print(np.hamming(12))

Output:

[ 0.08        0.15302337  0.34890909  0.60546483  0.84123594  0.98136677
  0.98136677  0.84123594  0.60546483  0.34890909  0.15302337  0.08      ]

Plotting the window and its frequency response (requires SciPy and matplotlib):
For Window:




import numpy as np 
import matplotlib.pyplot as plt 
from numpy.fft import fft, fftshift 
  
window = np.hamming(51)
  
plt.plot(window) 
plt.title("Hamming window")
plt.ylabel("Amplitude"
plt.xlabel("Sample"
plt.show() 

Output:

For frequency:




import numpy as np 
import matplotlib.pyplot as plt 
from numpy.fft import fft, fftshift 
  
window = np.hamming(51)
  
plt.figure()
  
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
  
plt.plot(freq, response)
plt.title("Frequency response of Hamming window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()

Output:


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!