Open In App

Hamiltonian Path ( Using Dynamic Programming )

Last Updated : 18 Jan, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given an adjacency matrix adj[][] of an undirected graph consisting of N vertices, the task is to find whether the graph contains a Hamiltonian Path or not. If found to be true, then print “Yes”. Otherwise, print “No”.

A Hamiltonian path is defined as the path in a directed or undirected graph which visits each and every vertex of the graph exactly once.

Examples:

Input: adj[][] = {{0, 1, 1, 1, 0}, {1, 0, 1, 0, 1}, {1, 1, 0, 1, 1}, {1, 0, 1, 0, 0}}
Output: Yes
Explanation:
There exists a Hamiltonian Path for the given graph as shown in the image below:

Input: adj[][] = {{0, 1, 0, 0}, {1, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 0}}
Output: No

Naive Approach: The simplest approach to solve the given problem is to generate all the possible permutations of N vertices. For each permutation, check if it is a valid Hamiltonian path by checking if there is an edge between adjacent vertices or not. If found to be true, then print “Yes”. Otherwise, print “No”.

Time Complexity: O(N * N!)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by using Dynamic Programming and Bit Masking which is based on the following observations:

  • The idea is such that for every subset S of vertices, check whether there is a hamiltonian path in the subset S that ends at vertex v where v € S.
  • If v has a neighbor u, where u € S – {v}, therefore, there exists a Hamiltonian path that ends at vertex u.
  • The problem can be solved by generalizing the subset of vertices and the ending vertex of the Hamiltonian path.

Follow the steps below to solve the problem:

  • Initialize a boolean matrix dp[][] in dimension N*2N where dp[j ][i] represents whether there exists a path in the subset or not represented by the mask i that visits each and every vertex in i once and ends at vertex j.
  • For the base case, update dp[i][1 << i] = true, for i in range [0, N – 1]
  • Iterate over the range [1, 2N – 1] using the variable i and perform the following steps:
    • All the vertices with bits set in mask i, are included in the subset.
    • Iterate over the range [1, N] using the variable j that will represent the end vertex of the hamiltonian path of current subset mask i and perform the following steps:
  • Iterate over the range using the variable i and if the value of dp[i][2N – 1] is true, then there exists a hamiltonian path ending at vertex i. Therefore, print “Yes”. Otherwise, print “No”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
const int N = 5;
 
// Function to check whether there
// exists a Hamiltonian Path or not
bool Hamiltonian_path(
    vector<vector<int> >& adj, int N)
{
    int dp[N][(1 << N)];
 
    // Initialize the table
    memset(dp, 0, sizeof dp);
 
    // Set all dp[i][(1 << i)] to
    // true
    for (int i = 0; i < N; i++)
        dp[i][(1 << i)] = true;
 
    // Iterate over each subset
    // of nodes
    for (int i = 0; i < (1 << N); i++) {
 
        for (int j = 0; j < N; j++) {
 
            // If the jth nodes is included
            // in the current subset
            if (i & (1 << j)) {
 
                // Find K, neighbour of j
                // also present in the
                // current subset
                for (int k = 0; k < N; k++) {
 
                    if (i & (1 << k)
                        && adj[k][j]
                        && j != k
                        && dp[k][i ^ (1 << j)]) {
 
                        // Update dp[j][i]
                        // to true
                        dp[j][i] = true;
                        break;
                    }
                }
            }
        }
    }
 
    // Traverse the vertices
    for (int i = 0; i < N; i++) {
 
        // Hamiltonian Path exists
        if (dp[i][(1 << N) - 1])
            return true;
    }
 
    // Otherwise, return false
    return false;
}
 
// Driver Code
int main()
{
 
    // Input
    vector<vector<int> > adj = { { 0, 1, 1, 1, 0 },
                                 { 1, 0, 1, 0, 1 },
                                 { 1, 1, 0, 1, 1 },
                                 { 1, 0, 1, 0, 0 } };
    int N = adj.size();
 
    // Function Call
    if (Hamiltonian_path(adj, N))
        cout << "YES";
    else
        cout << "NO";
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to check whether there
// exists a Hamiltonian Path or not
static boolean Hamiltonian_path(int adj[][], int N)
{
    boolean dp[][] = new boolean[N][(1 << N)];
 
    // Set all dp[i][(1 << i)] to
    // true
    for(int i = 0; i < N; i++)
        dp[i][(1 << i)] = true;
 
    // Iterate over each subset
    // of nodes
    for(int i = 0; i < (1 << N); i++)
    {
        for(int j = 0; j < N; j++)
        {
             
            // If the jth nodes is included
            // in the current subset
            if ((i & (1 << j)) != 0)
            {
 
                // Find K, neighbour of j
                // also present in the
                // current subset
                for(int k = 0; k < N; k++)
                {
                     
                    if ((i & (1 << k)) != 0 &&
                         adj[k][j] == 1 && j != k &&
                           dp[k][i ^ (1 << j)])
                    {
                         
                        // Update dp[j][i]
                        // to true
                        dp[j][i] = true;
                        break;
                    }
                }
            }
        }
    }
 
    // Traverse the vertices
    for(int i = 0; i < N; i++)
    {
         
        // Hamiltonian Path exists
        if (dp[i][(1 << N) - 1])
            return true;
    }
 
    // Otherwise, return false
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    int adj[][] = { { 0, 1, 1, 1, 0 },
                    { 1, 0, 1, 0, 1 },
                    { 1, 1, 0, 1, 1 },
                    { 1, 0, 1, 0, 0 } };
    int N = adj.length;
 
    // Function Call
    if (Hamiltonian_path(adj, N))
        System.out.println("YES");
    else
        System.out.println("NO");
}
}
 
// This code is contributed by Kingash


Python3




# Python3 program for the above approach
 
# Function to check whether there
# exists a Hamiltonian Path or not
def Hamiltonian_path(adj, N):
     
    dp = [[False for i in range(1 << N)]
                 for j in range(N)]
 
    # Set all dp[i][(1 << i)] to
    # true
    for i in range(N):
        dp[i][1 << i] = True
 
    # Iterate over each subset
    # of nodes
    for i in range(1 << N):
        for j in range(N):
 
            # If the jth nodes is included
            # in the current subset
            if ((i & (1 << j)) != 0):
 
                # Find K, neighbour of j
                # also present in the
                # current subset
                for k in range(N):
                    if ((i & (1 << k)) != 0 and
                             adj[k][j] == 1 and
                                     j != k and
                          dp[k][i ^ (1 << j)]):
                         
                        # Update dp[j][i]
                        # to true
                        dp[j][i] = True
                        break
     
    # Traverse the vertices
    for i in range(N):
 
        # Hamiltonian Path exists
        if (dp[i][(1 << N) - 1]):
            return True
 
    # Otherwise, return false
    return False
 
# Driver Code
adj = [ [ 0, 1, 1, 1, 0 ] ,
        [ 1, 0, 1, 0, 1 ],
        [ 1, 1, 0, 1, 1 ],
        [ 1, 0, 1, 0, 0 ] ]
 
N = len(adj)
 
if (Hamiltonian_path(adj, N)):
    print("YES")
else:
    print("NO")
 
# This code is contributed by maheshwaripiyush9


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check whether there
// exists a Hamiltonian Path or not
static bool Hamiltonian_path(int[,] adj, int N)
{
    bool[,] dp = new bool[N, (1 << N)];
 
    // Set all dp[i][(1 << i)] to
    // true
    for(int i = 0; i < N; i++)
        dp[i, (1 << i)] = true;
 
    // Iterate over each subset
    // of nodes
    for(int i = 0; i < (1 << N); i++)
    {
        for(int j = 0; j < N; j++)
        {
             
            // If the jth nodes is included
            // in the current subset
            if ((i & (1 << j)) != 0)
            {
                 
                // Find K, neighbour of j
                // also present in the
                // current subset
                for(int k = 0; k < N; k++)
                {
                     
                    if ((i & (1 << k)) != 0 &&
                        adj[k, j] == 1 && j != k &&
                        dp[k, i ^ (1 << j)])
                    {
 
                        // Update dp[j][i]
                        // to true
                        dp[j, i] = true;
                        break;
                    }
                }
            }
        }
    }
 
    // Traverse the vertices
    for(int i = 0; i < N; i++)
    {
         
        // Hamiltonian Path exists
        if (dp[i, (1 << N) - 1])
            return true;
    }
 
    // Otherwise, return false
    return false;
}
 
// Driver Code
public static void Main(String[] args)
{
    int[,] adj = { { 0, 1, 1, 1, 0 },
                   { 1, 0, 1, 0, 1 },
                   { 1, 1, 0, 1, 1 },
                   { 1, 0, 1, 0, 0 } };
    int N = adj.GetLength(0);
 
    // Function Call
    if (Hamiltonian_path(adj, N))
        Console.WriteLine("YES");
    else
        Console.WriteLine("NO");
}
}
 
// This code is contributed by ukasp


Javascript




<script>
 
// Javascript program for the above approach
var N = 5;
 
// Function to check whether there
// exists a Hamiltonian Path or not
function Hamiltonian_path( adj, N)
{
    var dp = Array.from(Array(N), ()=> Array(1 << N).fill(0));
 
 
    // Set all dp[i][(1 << i)] to
    // true
    for (var i = 0; i < N; i++)
        dp[i][(1 << i)] = true;
 
    // Iterate over each subset
    // of nodes
    for (var i = 0; i < (1 << N); i++) {
 
        for (var j = 0; j < N; j++) {
 
            // If the jth nodes is included
            // in the current subset
            if (i & (1 << j)) {
 
                // Find K, neighbour of j
                // also present in the
                // current subset
                for (var k = 0; k < N; k++) {
 
                    if (i & (1 << k)
                        && adj[k][j]
                        && j != k
                        && dp[k][i ^ (1 << j)]) {
 
                        // Update dp[j][i]
                        // to true
                        dp[j][i] = true;
                        break;
                    }
                }
            }
        }
    }
 
    // Traverse the vertices
    for (var i = 0; i < N; i++) {
 
        // Hamiltonian Path exists
        if (dp[i][(1 << N) - 1])
            return true;
    }
 
    // Otherwise, return false
    return false;
}
 
// Driver Code
// Input
var adj = [ [ 0, 1, 1, 1, 0 ],
                             [ 1, 0, 1, 0, 1 ],
                             [ 1, 1, 0, 1, 1 ],
                             [ 1, 0, 1, 0, 0 ] ];
var N = adj.length;
// Function Call
if (Hamiltonian_path(adj, N))
    document.write( "YES");
else
    document.write( "NO");
 
 
</script>


Output: 

YES

 

Time Complexity: O(N2 * 2N)
Auxiliary Space: O(N * 2N)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads