Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Grouping Rows in pandas

  • Difficulty Level : Basic
  • Last Updated : 14 Jan, 2019

Pandas is the most popular Python library that is used for data analysis. It provides highly optimized performance with back-end source code is purely written in C or Python.

Let’s see how to group rows in Pandas Dataframe with help of multiple examples.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Example 1:

For grouping rows in Pandas, we will start with creating a pandas dataframe first.

# importing Pandas
import pandas as pd
# example dataframe
example = {'Team':['Arsenal', 'Manchester United', 'Arsenal',
                   'Arsenal', 'Chelsea', 'Manchester United',
                   'Manchester United', 'Chelsea', 'Chelsea', 'Chelsea'],
           'Player':['Ozil', 'Pogba', 'Lucas', 'Aubameyang',
                       'Hazard', 'Mata', 'Lukaku', 'Morata'
                                         'Giroud', 'Kante'],
           'Goals':[5, 3, 6, 4, 9, 2, 0, 5, 2, 3] }
df = pd.DataFrame(example)

Now, create a grouping object, means an object that represents that particular grouping.

total_goals = df['Goals'].groupby(df['Team'])
# printing the means value


Example 2:

import pandas as pd
# example dataframe
example = {'Team':['Australia', 'England', 'South Africa',
                   'Australia', 'England', 'India', 'India',
                        'South Africa', 'England', 'India'],
           'Player':['Ricky Ponting', 'Joe Root', 'Hashim Amla',
                     'David Warner', 'Jos Buttler', 'Virat Kohli',
                     'Rohit Sharma', 'David Miller', 'Eoin Morgan',
                                                 'Dinesh Karthik'],
          'Runs':[345, 336, 689, 490, 989, 672, 560, 455, 342, 376],
          'Salary':[34500, 33600, 68900, 49000, 98899,
                    67562, 56760, 45675, 34542, 31176] }
df = pd.DataFrame(example)
total_salary = df['Salary'].groupby(df['Team'])
# printing the means value


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!