Group multiple occurrence of array elements ordered by first occurrence
Given an unsorted array with repetitions, the task is to group multiple occurrence of individual elements. The grouping should happen in a way that the order of first occurrences of all elements is maintained.
Examples:
Input: arr[] = {5, 3, 5, 1, 3, 3} Output: {5, 5, 3, 3, 3, 1} Input: arr[] = {4, 6, 9, 2, 3, 4, 9, 6, 10, 4} Output: {4, 4, 4, 6, 6, 9, 9, 2, 3, 10}
Simple Solution is to use nested loops. The outer loop traverses array elements one by one. The inner loop checks if this is first occurrence, if yes, then the inner loop prints it and all other occurrences.
C++
// A simple C++ program to group multiple occurrences of individual // array elements #include<bits/stdc++.h> using namespace std; // A simple method to group all occurrences of individual elements void groupElements( int arr[], int n) { // Initialize all elements as not visited bool *visited = new bool [n]; for ( int i=0; i<n; i++) visited[i] = false ; // Traverse all elements for ( int i=0; i<n; i++) { // Check if this is first occurrence if (!visited[i]) { // If yes, print it and all subsequent occurrences cout << arr[i] << " " ; for ( int j=i+1; j<n; j++) { if (arr[i] == arr[j]) { cout << arr[i] << " " ; visited[j] = true ; } } } } delete [] visited; } /* Driver program to test above function */ int main() { int arr[] = {4, 6, 9, 2, 3, 4, 9, 6, 10, 4}; int n = sizeof (arr)/ sizeof (arr[0]); groupElements(arr, n); return 0; } |
Java
// A simple Java program to group // multiple occurrences of individual // array elements class GFG { // A simple method to group all occurrences // of individual elements static void groupElements( int arr[], int n) { // Initialize all elements as not visited boolean visited[] = new boolean [n]; for ( int i = 0 ; i < n; i++) { visited[i] = false ; } // Traverse all elements for ( int i = 0 ; i < n; i++) { // Check if this is first occurrence if (!visited[i]) { // If yes, print it and all // subsequent occurrences System.out.print(arr[i] + " " ); for ( int j = i + 1 ; j < n; j++) { if (arr[i] == arr[j]) { System.out.print(arr[i] + " " ); visited[j] = true ; } } } } } /* Driver code */ public static void main(String[] args) { int arr[] = { 4 , 6 , 9 , 2 , 3 , 4 , 9 , 6 , 10 , 4 }; int n = arr.length; groupElements(arr, n); } } // This code is contributed by Rajput-JI |
Python3
# A simple Python 3 program to # group multiple occurrences of # individual array elements # A simple method to group all # occurrences of individual elements def groupElements(arr, n): # Initialize all elements # as not visited visited = [ False ] * n for i in range ( 0 , n): visited[i] = False # Traverse all elements for i in range ( 0 , n): # Check if this is # first occurrence if (visited[i] = = False ): # If yes, print it and # all subsequent occurrences print (arr[i], end = " " ) for j in range (i + 1 , n): if (arr[i] = = arr[j]): print (arr[i], end = " " ) visited[j] = True # Driver Code arr = [ 4 , 6 , 9 , 2 , 3 , 4 , 9 , 6 , 10 , 4 ] n = len (arr) groupElements(arr, n) # This code is contributed # by Smitha |
C#
// A simple C# program to group // multiple occurrences of individual // array elements using System; class GFG { // A simple method to group all occurrences // of individual elements static void groupElements( int []arr, int n) { // Initialize all elements as not visited bool []visited = new bool [n]; for ( int i = 0; i < n; i++) { visited[i] = false ; } // Traverse all elements for ( int i = 0; i < n; i++) { // Check if this is first occurrence if (!visited[i]) { // If yes, print it and all // subsequent occurrences Console.Write(arr[i] + " " ); for ( int j = i + 1; j < n; j++) { if (arr[i] == arr[j]) { Console.Write(arr[i] + " " ); visited[j] = true ; } } } } } /* Driver code */ public static void Main(String[] args) { int []arr = {4, 6, 9, 2, 3, 4, 9, 6, 10, 4}; int n = arr.Length; groupElements(arr, n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to group // multiple occurrences of individual // array elements // A simple method to group all occurrences // of individual elements function groupElements(arr, n) { // Initialize all elements as not visited let visited = Array(n).fill(0); for (let i = 0; i < n; i++) { visited[i] = false ; } // Traverse all elements for (let i = 0; i < n; i++) { // Check if this is first occurrence if (!visited[i]) { // If yes, print it and all // subsequent occurrences document.write(arr[i] + " " ); for (let j = i + 1; j < n; j++) { if (arr[i] == arr[j]) { document.write(arr[i] + " " ); visited[j] = true ; } } } } } // Driver program let arr = [ 4, 6, 9, 2, 3, 4, 9, 6, 10, 4]; let n = arr.length; groupElements(arr, n); </script> |
4 4 4 6 6 9 9 2 3 10
Time complexity: O(n2)
As we are using nested loops.
Auxiliary Space: O(n)
The extra space is used to store the elements of the visited array;
Binary Search Tree based Method:
The time complexity can be improved to O(nLogn) using self-balancing binary search tree like Red-Black Tree or AVL tree. Following is complete algorithm.
- Create an empty Binary Search Tree (BST). Every BST node is going to contain an array element and its count.
- Traverse the input array and do following for every element.
- If element is not present in BST, then insert it with count as 0.
- If element is present, then increment count in corresponding BST node.
- Traverse the array again and do following for every element.
- If element is present in BST, then do following
- Get its count and print the element ‘count’ times.
- b) Delete the element from BST.
Time Complexity of the above solution is O(nLogn).
Hashing based Method: We can also use hashing. The idea is to replace Binary Search Tree with a Hash Map in above algorithm.
Below is Implementation of hashing based solution.
C++
#include<bits/stdc++.h> using namespace std; // C++ program to group multiple // occurrences of individual array elements // A hashing based method to group // all occurrences of individual elements void orderedGroup(vector< int >&arr){ // Creates an empty hashmap map< int , int >hM; // Traverse the array elements, and store // count for every element in HashMap for ( int i=0;i<arr.size();i++){ // Increment count of elements // in HashMap hM[arr[i]]++; } // Traverse array again for ( int i=0;i<arr.size();i++){ // Check if this is first occurrence int count = (hM.find(arr[i]) == hM.end())? 0 : hM[arr[i]]; if (hM.find(arr[i]) != hM.end()){ // If yes, then print // the element 'count' times for ( int j=0;j<count;j++){ cout<<arr[i]<< " " ; } // And remove the element from HashMap. hM.erase(arr[i]); } } } // Driver Code int main(){ vector< int >arr = {10, 5, 3, 10, 10, 4, 1, 3}; orderedGroup(arr); } // This code is contributed by shinjanpatra |
Java
/* Java program to group multiple occurrences of individual array elements */ import java.util.HashMap; class Main { // A hashing based method to group all occurrences of individual elements static void orderedGroup( int arr[]) { // Creates an empty hashmap HashMap<Integer, Integer> hM = new HashMap<Integer, Integer>(); // Traverse the array elements, and store count for every element // in HashMap for ( int i= 0 ; i<arr.length; i++) { // Check if element is already in HashMap Integer prevCount = hM.get(arr[i]); if (prevCount == null ) prevCount = 0 ; // Increment count of element element in HashMap hM.put(arr[i], prevCount + 1 ); } // Traverse array again for ( int i= 0 ; i<arr.length; i++) { // Check if this is first occurrence Integer count = hM.get(arr[i]); if (count != null ) { // If yes, then print the element 'count' times for ( int j= 0 ; j<count; j++) System.out.print(arr[i] + " " ); // And remove the element from HashMap. hM.remove(arr[i]); } } } // Driver method to test above method public static void main (String[] args) { int arr[] = { 10 , 5 , 3 , 10 , 10 , 4 , 1 , 3 }; orderedGroup(arr); } } |
Python3
# Python3 program to group multiple # occurrences of individual array elements # A hashing based method to group # all occurrences of individual elements def orderedGroup(arr): # Creates an empty hashmap hM = {} # Traverse the array elements, and store # count for every element in HashMap for i in range ( 0 , len (arr)): # Increment count of elements # in HashMap hM[arr[i]] = hM.get(arr[i], 0 ) + 1 # Traverse array again for i in range ( 0 , len (arr)): # Check if this is first occurrence count = hM.get(arr[i], None ) if count ! = None : # If yes, then print # the element 'count' times for j in range ( 0 , count): print (arr[i], end = " " ) # And remove the element from HashMap. del hM[arr[i]] # Driver Code if __name__ = = "__main__" : arr = [ 10 , 5 , 3 , 10 , 10 , 4 , 1 , 3 ] orderedGroup(arr) # This code is contributed by Rituraj Jain |
C#
// C# program to group multiple occurrences // of individual array elements using System; using System.Collections.Generic; class GFG { // A hashing based method to group // all occurrences of individual elements static void orderedGroup( int []arr) { // Creates an empty hashmap Dictionary< int , int > hM = new Dictionary< int , int >(); // Traverse the array elements, // and store count for every element in HashMap for ( int i = 0; i < arr.Length; i++) { // Check if element is already in HashMap int prevCount = 0; if (hM.ContainsKey(arr[i])) prevCount = hM[arr[i]]; // Increment count of element element in HashMap if (hM.ContainsKey(arr[i])) hM[arr[i]] = prevCount + 1; else hM.Add(arr[i], prevCount + 1); } // Traverse array again for ( int i = 0; i < arr.Length; i++) { // Check if this is first occurrence int count = 0; if (hM.ContainsKey(arr[i])) count = hM[arr[i]]; if (count != 0) { // If yes, then print the // element 'count' times for ( int j = 0; j < count; j++) Console.Write(arr[i] + " " ); // And remove the element from HashMap. hM.Remove(arr[i]); } } } // Driver Code public static void Main (String[] args) { int []arr = {10, 5, 3, 10, 10, 4, 1, 3}; orderedGroup(arr); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program to group multiple occurrences // of individual array elements // A hashing based method to group // all occurrences of individual elements function orderedGroup(arr) { // Creates an empty hashmap var hM = {}; // Traverse the array elements, // and store count for every element in HashMap for ( var i = 0; i < arr.length; i++) { // Check if element is already in HashMap var prevCount = 0; if (hM.hasOwnProperty(arr[i])) prevCount = hM[arr[i]]; // Increment count of element element in HashMap if (hM.hasOwnProperty(arr[i])) hM[arr[i]] = prevCount + 1; else hM[arr[i]] = prevCount + 1; } // Traverse array again for ( var i = 0; i < arr.length; i++) { // Check if this is first occurrence var count = 0; if (hM.hasOwnProperty(arr[i])) count = hM[arr[i]]; if (count !== 0) { // If yes, then print the // element 'count' times for ( var j = 0; j < count; j++) document.write(arr[i] + " " ); // And remove the element from HashMap. delete hM[arr[i]]; } } } // Driver Code var arr = [10, 5, 3, 10, 10, 4, 1, 3]; orderedGroup(arr); </script> |
10 10 10 5 3 3 4 1
Time Complexity of the above hashing based solution is Θ(n) under the assumption that insert, search and delete operations on HashMap take O(1) time.
Auxiliary Space: O(n)
The extra space is used to store the elements in the map.
Below is a related problem for strings.
Group all occurrences of characters according to first appearance
This article is contributed by Himanshu Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...