This series will introduce you to graphing in python with Matplotlib, which is arguably the most popular graphing and data visualization library for Python.

**Installation**

Easiest way to install matplotlib is to use pip. Type following command in terminal:

pip install matplotlib

OR, you can download it from here and install it manually.

**Getting started ( Plotting a line)**

`# importing the required module` `import` `matplotlib.pyplot as plt` ` ` `# x axis values` `x ` `=` `[` `1` `,` `2` `,` `3` `]` `# corresponding y axis values` `y ` `=` `[` `2` `,` `4` `,` `1` `]` ` ` `# plotting the points ` `plt.plot(x, y)` ` ` `# naming the x axis` `plt.xlabel(` `'x - axis'` `)` `# naming the y axis` `plt.ylabel(` `'y - axis'` `)` ` ` `# giving a title to my graph` `plt.title(` `'My first graph!'` `)` ` ` `# function to show the plot` `plt.show()` |

Output:

The code seems self explanatory. Following steps were followed:

- Define the x-axis and corresponding y-axis values as lists.
- Plot them on canvas using
**.plot()**function. - Give a name to x-axis and y-axis using
**.xlabel()**and**.ylabel()**functions. - Give a title to your plot using
**.title()**function. - Finally, to view your plot, we use
**.show()**function.

**Plotting two or more lines on same plot**

`import` `matplotlib.pyplot as plt` ` ` `# line 1 points` `x1 ` `=` `[` `1` `,` `2` `,` `3` `]` `y1 ` `=` `[` `2` `,` `4` `,` `1` `]` `# plotting the line 1 points ` `plt.plot(x1, y1, label ` `=` `"line 1"` `)` ` ` `# line 2 points` `x2 ` `=` `[` `1` `,` `2` `,` `3` `]` `y2 ` `=` `[` `4` `,` `1` `,` `3` `]` `# plotting the line 2 points ` `plt.plot(x2, y2, label ` `=` `"line 2"` `)` ` ` `# naming the x axis` `plt.xlabel(` `'x - axis'` `)` `# naming the y axis` `plt.ylabel(` `'y - axis'` `)` `# giving a title to my graph` `plt.title(` `'Two lines on same graph!'` `)` ` ` `# show a legend on the plot` `plt.legend()` ` ` `# function to show the plot` `plt.show()` |

Output:

- Here, we plot two lines on same graph. We differentiate between them by giving them a name(
**label**) which is passed as an argument of .plot() function. - The small rectangular box giving information about type of line and its color is called legend. We can add a legend to our plot using
**.legend()**function.

**C****ustomization of Plots**

Here, we discuss some elementary customizations applicable on almost any plot.

`import` `matplotlib.pyplot as plt` ` ` `# x axis values` `x ` `=` `[` `1` `,` `2` `,` `3` `,` `4` `,` `5` `,` `6` `]` `# corresponding y axis values` `y ` `=` `[` `2` `,` `4` `,` `1` `,` `5` `,` `2` `,` `6` `]` ` ` `# plotting the points ` `plt.plot(x, y, color` `=` `'green'` `, linestyle` `=` `'dashed'` `, linewidth ` `=` `3` `,` ` ` `marker` `=` `'o'` `, markerfacecolor` `=` `'blue'` `, markersize` `=` `12` `)` ` ` `# setting x and y axis range` `plt.ylim(` `1` `,` `8` `)` `plt.xlim(` `1` `,` `8` `)` ` ` `# naming the x axis` `plt.xlabel(` `'x - axis'` `)` `# naming the y axis` `plt.ylabel(` `'y - axis'` `)` ` ` `# giving a title to my graph` `plt.title(` `'Some cool customizations!'` `)` ` ` `# function to show the plot` `plt.show()` |

Output:

As you can see, we have done several customizations like

- setting the line-width, line-style, line-color.
- setting the marker, marker’s face color, marker’s size.
- overriding the x and y axis range. If overriding is not done, pyplot module uses auto-scale feature to set the axis range and scale.

**Bar Chart**

`import` `matplotlib.pyplot as plt` ` ` `# x-coordinates of left sides of bars ` `left ` `=` `[` `1` `, ` `2` `, ` `3` `, ` `4` `, ` `5` `]` ` ` `# heights of bars` `height ` `=` `[` `10` `, ` `24` `, ` `36` `, ` `40` `, ` `5` `]` ` ` `# labels for bars` `tick_label ` `=` `[` `'one'` `, ` `'two'` `, ` `'three'` `, ` `'four'` `, ` `'five'` `]` ` ` `# plotting a bar chart` `plt.bar(left, height, tick_label ` `=` `tick_label,` ` ` `width ` `=` `0.8` `, color ` `=` `[` `'red'` `, ` `'green'` `])` ` ` `# naming the x-axis` `plt.xlabel(` `'x - axis'` `)` `# naming the y-axis` `plt.ylabel(` `'y - axis'` `)` `# plot title` `plt.title(` `'My bar chart!'` `)` ` ` `# function to show the plot` `plt.show()` |

Output :

- Here, we use
**plt.bar()**function to plot a bar chart. - x-coordinates of left side of bars are passed along with heights of bars.
- you can also give some name to x-axis coordinates by defining
**tick_labels**

**Histogram**

`import` `matplotlib.pyplot as plt` ` ` `# frequencies` `ages ` `=` `[` `2` `,` `5` `,` `70` `,` `40` `,` `30` `,` `45` `,` `50` `,` `45` `,` `43` `,` `40` `,` `44` `,` ` ` `60` `,` `7` `,` `13` `,` `57` `,` `18` `,` `90` `,` `77` `,` `32` `,` `21` `,` `20` `,` `40` `]` ` ` `# setting the ranges and no. of intervals` `range` `=` `(` `0` `, ` `100` `)` `bins ` `=` `10` ` ` `# plotting a histogram` `plt.hist(ages, bins, ` `range` `, color ` `=` `'green'` `,` ` ` `histtype ` `=` `'bar'` `, rwidth ` `=` `0.8` `)` ` ` `# x-axis label` `plt.xlabel(` `'age'` `)` `# frequency label` `plt.ylabel(` `'No. of people'` `)` `# plot title` `plt.title(` `'My histogram'` `)` ` ` `# function to show the plot` `plt.show()` |

Output:

- Here, we use
**plt.hist()**function to plot a histogram. - frequencies are passed as the
**ages**list. - Range could be set by defining a tuple containing min and max value.
- Next step is to “
**bin**” the range of values—that is, divide the entire range of values into a series of intervals—and then count how many values fall into each interval. Here we have defined**bins**= 10. So, there are a total of 100/10 = 10 intervals.

**Scatter plot**

`import` `matplotlib.pyplot as plt` ` ` `# x-axis values` `x ` `=` `[` `1` `,` `2` `,` `3` `,` `4` `,` `5` `,` `6` `,` `7` `,` `8` `,` `9` `,` `10` `]` `# y-axis values` `y ` `=` `[` `2` `,` `4` `,` `5` `,` `7` `,` `6` `,` `8` `,` `9` `,` `11` `,` `12` `,` `12` `]` ` ` `# plotting points as a scatter plot` `plt.scatter(x, y, label` `=` `"stars"` `, color` `=` `"green"` `, ` ` ` `marker` `=` `"*"` `, s` `=` `30` `)` ` ` `# x-axis label` `plt.xlabel(` `'x - axis'` `)` `# frequency label` `plt.ylabel(` `'y - axis'` `)` `# plot title` `plt.title(` `'My scatter plot!'` `)` `# showing legend` `plt.legend()` ` ` `# function to show the plot` `plt.show()` |

Output:

- Here, we use
**plt.scatter()**function to plot a scatter plot. - Like a line, we define x and corresponding y – axis values here as well.
**marker**argument is used to set the character to use as marker. Its size can be defined using**s**parameter.

**Pie-chart**

`import` `matplotlib.pyplot as plt` ` ` `# defining labels` `activities ` `=` `[` `'eat'` `, ` `'sleep'` `, ` `'work'` `, ` `'play'` `]` ` ` `# portion covered by each label` `slices ` `=` `[` `3` `, ` `7` `, ` `8` `, ` `6` `]` ` ` `# color for each label` `colors ` `=` `[` `'r'` `, ` `'y'` `, ` `'g'` `, ` `'b'` `]` ` ` `# plotting the pie chart` `plt.pie(slices, labels ` `=` `activities, colors` `=` `colors, ` ` ` `startangle` `=` `90` `, shadow ` `=` `True` `, explode ` `=` `(` `0` `, ` `0` `, ` `0.1` `, ` `0` `),` ` ` `radius ` `=` `1.2` `, autopct ` `=` `'%1.1f%%'` `)` ` ` `# plotting legend` `plt.legend()` ` ` `# showing the plot` `plt.show()` |

Output of above program looks like this:

- Here, we plot a pie chart by using
**plt.pie()**method. - First of all, we define the
**labels**using a list called**activities**. - Then, portion of each label can be defined using another list called
**slices**. - Color for each label is defined using a list called
**colors**. **shadow = True**will show a shadow beneath each label in pie-chart.**startangle**rotates the start of the pie chart by given degrees counterclockwise from the x-axis.**explode**is used to set the fraction of radius with which we offset each wedge.**autopct**is used to format the value of each label. Here, we have set it to show the percentage value only upto 1 decimal place.

**Plotting curves of given equation**

`# importing the required modules` `import` `matplotlib.pyplot as plt` `import` `numpy as np` ` ` `# setting the x - coordinates` `x ` `=` `np.arange(` `0` `, ` `2` `*` `(np.pi), ` `0.1` `)` `# setting the corresponding y - coordinates` `y ` `=` `np.sin(x)` ` ` `# potting the points` `plt.plot(x, y)` ` ` `# function to show the plot` `plt.show()` |

Output of above program looks like this:

Here, we use **NumPy** which is a general-purpose array-processing package in python.

- To set the x – axis values, we use
**np.arange()**method in which first two arguments are for range and third one for step-wise increment. The result is a numpy array. - To get corresponding y-axis values, we simply use predefined
**np.sin()**method on the numpy array. - Finally, we plot the points by passing x and y arrays to the
**plt.plot()**function.

So, in this part, we discussed various types of plots we can create in matplotlib. There are more plots which haven’t been covered but the most significant ones are discussed here –

This article is contributed by **Nikhil Kumar**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course.