In mathematics, the Golomb sequence is a non-decreasing integer sequence where n-th term is equal to number of times n appears in the sequence.
The first few values are
1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, ……
Explanation of few terms:
Third term is 2, note that three appears 2 times.
Second term is 2, note that two appears 2 times.
Fourth term is 3, note that four appears 3 times.
Given a positive integer n. The task is to find the first n terms of Golomb sequence.
Examples:
Input : n = 4
Output : 1 2 2 3
Input : n = 6
Output : 1 2 2 3 3 4
The recurrence relation to find the nth term of Golomb sequence:
a(1) = 1
a(n + 1) = 1 + a(n + 1 – a(a(n)))
Below is the implementation using Recursion:
C++
#include <bits/stdc++.h>
using namespace std;
int findGolomb( int n)
{
if (n == 1)
return 1;
return 1 + findGolomb(n -
findGolomb(findGolomb(n - 1)));
}
void printGolomb( int n)
{
for ( int i = 1; i <= n; i++)
cout << findGolomb(i) << " " ;
}
int main()
{
int n = 9;
printGolomb(n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
public static int findGolomb( int n)
{
if (n == 1 )
return 1 ;
return 1 + findGolomb(n -
findGolomb(findGolomb(n - 1 )));
}
public static void printGolomb( int n)
{
for ( int i = 1 ; i <= n; i++)
System.out.print(findGolomb(i) +
" " );
}
public static void main (String[] args)
{
int n = 9 ;
printGolomb(n);
}
}
|
Python3
def findGolomb(n):
if (n = = 1 ):
return 1
return 1 + findGolomb(n -
findGolomb(findGolomb(n - 1 )))
def printGolomb(n):
for i in range ( 1 , n + 1 ):
print (findGolomb(i), end = " " )
n = 9
printGolomb(n)
|
C#
using System;
class GFG
{
static int findGolomb( int n)
{
if (n == 1)
return 1;
return 1 + findGolomb(n -
findGolomb(findGolomb(n - 1)));
}
static void printGolomb( int n)
{
for ( int i = 1; i <= n; i++)
Console .Write(findGolomb(i) +
" " );
}
public static void Main ()
{
int n = 9;
printGolomb(n);
}
}
|
PHP
<?php
function findGolomb( $n )
{
if ( $n == 1)
return 1;
return 1 + findGolomb( $n -
findGolomb(findGolomb( $n - 1)));
}
function printGolomb( $n )
{
for ( $i = 1; $i <= $n ; $i ++)
echo findGolomb( $i ) , " " ;
}
$n = 9;
printGolomb( $n );
?>
|
Javascript
<script>
function findGolomb(n)
{
if (n == 1)
return 1;
return 1 + findGolomb(n - findGolomb(findGolomb(n - 1)));
}
function printGolomb(n)
{
for (let i = 1; i <= n; i++)
document.write(findGolomb(i) + " " );
}
var n = 9;
printGolomb(n);
</script>
|
Output :
1 2 2 3 3 4 4 4 5
Below is the implementation using Dynamic Programming:
C++
#include <bits/stdc++.h>
using namespace std;
void printGolomb( int n)
{
int dp[n + 1];
dp[1] = 1;
cout << dp[1] << " " ;
for ( int i = 2; i <= n; i++)
{
dp[i] = 1 + dp[i - dp[dp[i - 1]]];
cout << dp[i] << " " ;
}
}
int main()
{
int n = 9;
printGolomb(n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
public static void printGolomb( int n)
{
int dp[] = new int [n + 1 ];
dp[ 1 ] = 1 ;
System.out.print(dp[ 1 ] + " " );
for ( int i = 2 ; i <= n; i++)
{
dp[i] = 1 + dp[i - dp[dp[i - 1 ]]];
System.out.print(dp[i] + " " );
}
}
public static void main (String[] args)
{
int n = 9 ;
printGolomb(n);
}
}
|
Python3
def Golomb( n):
dp = [ 0 ] * (n + 1 )
dp[ 1 ] = 1
print (dp[ 1 ], end = " " )
for i in range ( 2 , n + 1 ):
dp[i] = 1 + dp[i - dp[dp[i - 1 ]]]
print (dp[i], end = " " )
n = 9
Golomb(n)
|
C#
using System;
class GFG
{
static void printGolomb( int n)
{
int []dp = new int [n + 1];
dp[1] = 1;
Console.Write(dp[1] + " " );
for ( int i = 2; i <= n; i++)
{
dp[i] = 1 + dp[i - dp[dp[i - 1]]];
Console.Write( dp[i] + " " );
}
}
public static void Main ()
{
int n = 9;
printGolomb(n);
}
}
|
PHP
<?php
function printGolomb( $n )
{
$dp [1] = 1;
echo $dp [1], " " ;
for ( $i = 2; $i <= $n ; $i ++)
{
$dp [ $i ] = 1 + $dp [ $i -
$dp [ $dp [ $i - 1]]];
echo $dp [ $i ], " " ;
}
}
$n = 9;
printGolomb( $n );
?>
|
Javascript
<script>
function printGolomb( n) {
let dp = Array(n + 1).fill(0);
dp[1] = 1;
document.write(dp[1] + " " );
for ( i = 2; i <= n; i++) {
dp[i] = 1 + dp[i - dp[dp[i - 1]]];
document.write(dp[i] + " " );
}
}
let n = 9;
printGolomb(n);
</script>
|
Output :
1 2 2 3 3 4 4 4 5
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Aug, 2022
Like Article
Save Article