Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Goldbach’s Weak Conjecture for Odd numbers

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an odd number N, the task is to find if the number can be represented as the sum of 3 prime numbers.
Examples: 
 

Input: N = 7
Output: Yes
Explanation:
2 + 2 + 3 = 7

Input: N = 17
Output: Yes
Explanation:
2 + 2 + 13 = 17

 

Approach: 
In number theory, Goldbach’s weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that Every odd number greater than 5 can be expressed as the sum of three primes. (A prime may be used more than once in the same sum.).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// if a number can
// be represent as
// as a sum of 3 prime
void check(int n)
{
    if (n % 2 == 1 && n > 5)
        cout << "Yes\n";
    else
        cout << "No\n";
}
     
// Driver code
int main()
{
    int a = 3;
    int b = 7;
    check(a);
    check(b);
    return 0;
}
 
// This code is contributed by 29AjayKumar

Java




class GFG
{
    // Function to check
    // if a number can
    // be represent as
    // as a sum of 3 prime
 
    static void check(int n)
    {
        if (n % 2 == 1 && n > 5)
        {
            System.out.println("YES");
        }
        else
        {
            System.out.println("NO");
        }
    }
     
    // Driver code
    public static void main(String[] args)
    {
        int a = 3;
        int b = 7;
        check(a);
        check(b);
    }
}
 
// This code is contributed by PrinciRaj1992

Python3




# Function to check
# if a number can
# be represent as
# as a sum of 3 prime
def check(n):
  if n % 2 == 1 and n > 5:
    print('YES')
  else:
    print('NO')
 
# Driver code
def main():
  a = 3
  b = 7
  check(a)
  check(b)
 
main()

C#




using System;
class GFG
{
    // Function to check
    // if a number can
    // be represent as
    // as a sum of 3 prime
 
    static void check(int n)
    {
        if (n % 2 == 1 && n > 5)
        {
            Console.Write("YES");
        }
        else
        {
            Console.WriteLine("NO");
        }
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        int a = 3;
        int b = 7;
        check(a);
        check(b);
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript




    // Function to check
    // if a number can
    // be represent as
    // as a sum of 3 prime
 
    function check(n)
    {
        if (n % 2 == 1 && n > 5)
        {
            document.write("YES");
        }
        else
        {
            document.write("NO" + "<br>");
        }
    }
     
    // Driver code
     
        var a = 3;
        var b = 7;
        check(a);
        check(b);
    
 
// This code is contributed by shivanisinghss2110

Output: 

NO
YES

 

Time Complexity: O(1)

Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 01 Mar, 2022
Like Article
Save Article
Similar Reads
Related Tutorials