Open In App
Related Articles

Given two arrays count all pairs whose sum is an odd number

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given two arrays of N and M integers. The task is to find the number of unordered pairs formed of elements from both arrays in such a way that their sum is an odd number. 
Note: An element can only be one pair.
Examples: 
 

Input: a[] = {9, 14, 6, 2, 11}, b[] = {8, 4, 7, 20} 
Output:
{9, 20}, {14, 7} and {11, 8}
Input: a[] = {2, 4, 6}, b[] = {8, 10, 12} 
Output:
 


 


Approach: Count the number of odd and even numbers in both the arrays and the answer to the number of pairs will be min(odd1, even2) + min(odd2, even1), because odd + even is only odd. 
Below is the implementation of the above approach: 
 

C++

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the number of pairs
int count_pairs(int a[], int b[], int n, int m)
{
 
    // Count of odd and even numbers
    int odd1 = 0, even1 = 0;
    int odd2 = 0, even2 = 0;
 
    // Traverse in the first array
    // and count the number of odd
    // and even numbers in them
    for (int i = 0; i < n; i++) {
        if (a[i] % 2)
            odd1++;
        else
            even1++;
    }
 
    // Traverse in the second array
    // and count the number of odd
    // and even numbers in them
    for (int i = 0; i < m; i++) {
        if (b[i] % 2)
            odd2++;
        else
            even2++;
    }
 
    // Count the number of pairs
    int pairs = min(odd1, even2) + min(odd2, even1);
 
    // Return the number of pairs
    return pairs;
}
 
// Driver code
int main()
{
    int a[] = { 9, 14, 6, 2, 11 };
    int b[] = { 8, 4, 7, 20 };
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
    cout << count_pairs(a, b, n, m);
 
    return 0;
}

                    

Java

// Java program to implement
// the above approach
 
class GFG {
 
    // Function that returns the number of pairs
    static int count_pairs(int a[], int b[], int n, int m)
    {
 
        // Count of odd and even numbers
        int odd1 = 0, even1 = 0;
        int odd2 = 0, even2 = 0;
 
        // Traverse in the first array
        // and count the number of odd
        // and even numbers in them
        for (int i = 0; i < n; i++) {
            if (a[i] % 2 == 1) {
                odd1++;
            }
            else {
                even1++;
            }
        }
 
        // Traverse in the second array
        // and count the number of odd
        // and even numbers in them
        for (int i = 0; i < m; i++) {
            if (b[i] % 2 == 1) {
                odd2++;
            }
            else {
                even2++;
            }
        }
 
        // Count the number of pairs
        int pairs = Math.min(odd1, even2) + Math.min(odd2, even1);
 
        // Return the number of pairs
        return pairs;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { 9, 14, 6, 2, 11 };
        int b[] = { 8, 4, 7, 20 };
        int n = a.length;
        int m = b.length;
        System.out.println(count_pairs(a, b, n, m));
    }
}
 
// This code contributed by Rajput-Ji

                    

Python3

# Python 3 program to implement
# the above approach
 
# Function that returns
# the number of pairs
def count_pairs(a, b, n, m):
     
    # Count of odd and even numbers
    odd1 = 0
    even1 = 0
    odd2 = 0
    even2 = 0
 
    # Traverse in the first array
    # and count the number of odd
    # and even numbers in them
    for i in range(n):
        if (a[i] % 2):
            odd1 += 1
        else:
            even1 += 1
 
    # Traverse in the second array
    # and count the number of odd
    # and even numbers in them
    for i in range(m):
        if (b[i] % 2):
            odd2 += 1
        else:
            even2 += 1
 
    # Count the number of pairs
    pairs = (min(odd1, even2) +
             min(odd2, even1))
 
    # Return the number of pairs
    return pairs
 
# Driver code
if __name__ == '__main__':
    a = [9, 14, 6, 2, 11]
    b = [8, 4, 7, 20]
    n = len(a)
    m = len(b)
    print(count_pairs(a, b, n, m))
 
# This code is contributed by
# Surendra_Gangwar

                    

C#

// C# program to implement
// the above approach
using System;
 
class GFG {
 
    // Function that returns the number of pairs
    static int count_pairs(int[] a, int[] b, int n, int m)
    {
 
        // Count of odd and even numbers
        int odd1 = 0, even1 = 0;
        int odd2 = 0, even2 = 0;
 
        // Traverse in the first array
        // and count the number of odd
        // and even numbers in them
        for (int i = 0; i < n; i++) {
            if (a[i] % 2 == 1) {
                odd1++;
            }
            else {
                even1++;
            }
        }
 
        // Traverse in the second array
        // and count the number of odd
        // and even numbers in them
        for (int i = 0; i < m; i++) {
            if (b[i] % 2 == 1) {
                odd2++;
            }
            else {
                even2++;
            }
        }
 
        // Count the number of pairs
        int pairs = Math.Min(odd1, even2) + Math.Min(odd2, even1);
 
        // Return the number of pairs
        return pairs;
    }
 
    // Driver code
    static public void Main()
    {
        int[] a = { 9, 14, 6, 2, 11 };
        int[] b = { 8, 4, 7, 20 };
        int n = a.Length;
        int m = b.Length;
        Console.WriteLine(count_pairs(a, b, n, m));
    }
}
 
// This code contributed by ajit.

                    

PHP

<?php
// PHP program to implement
// the above approach
 
// Function that returns the number of pairs
function count_pairs($a, $b, $n, $m)
{
    // Count of odd and even numbers
    $odd1 = 0; $even1 = 0;
    $odd2 = 0; $even2 = 0;
 
    // Traverse in the first array
    // and count the number of odd
    // and even numbers in them
    for ($i = 0; $i < $n; $i++)
    {
        if ($a[$i] % 2)
            $odd1++;
        else
            $even1++;
    }
 
    // Traverse in the second array
    // and count the number of odd
    // and even numbers in them
    for ($i = 0; $i < $m; $i++)
    {
        if ($b[$i] % 2)
            $odd2++;
        else
            $even2++;
    }
 
    // Count the number of pairs
    $pairs = min($odd1, $even2) + min($odd2, $even1);
 
    // Return the number of pairs
    return $pairs;
}
 
    // Driver code
    $a = array( 9, 14, 6, 2, 11 );
    $b = array( 8, 4, 7, 20 );
    $n = count($a) ;
    $m = count($b) ;
     
    echo count_pairs($a, $b, $n, $m);
     
    // This code is contributed by Ryuga
?>

                    

Javascript

<script>
 
// JavaScript program to implement
// the above approach
 
// Function that returns the number of pairs
function count_pairs(a, b, n, m)
{
 
    // Count of odd and even numbers
    let odd1 = 0, even1 = 0;
    let odd2 = 0, even2 = 0;
 
    // Traverse in the first array
    // and count the number of odd
    // and even numbers in them
    for (let i = 0; i < n; i++) {
        if (a[i] % 2)
            odd1++;
        else
            even1++;
    }
 
    // Traverse in the second array
    // and count the number of odd
    // and even numbers in them
    for (let i = 0; i < m; i++) {
        if (b[i] % 2)
            odd2++;
        else
            even2++;
    }
 
    // Count the number of pairs
    let pairs = Math.min(odd1, even2) + Math.min(odd2, even1);
 
    // Return the number of pairs
    return pairs;
}
 
// Driver code
    let a = [ 9, 14, 6, 2, 11 ];
    let b = [ 8, 4, 7, 20 ];
    let n = a.length;
    let m = b.length;
    document.write(count_pairs(a, b, n, m));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>

                    

Output: 
3

 

Time Complexity: O(n + m)

Auxiliary Space: O(1)



Last Updated : 07 Jul, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads