Skip to content
Related Articles

Related Articles

Improve Article

Given N and Standard Deviation, find N elements

  • Last Updated : 01 Oct, 2021

Given N and Standard deviation find the N elements. 

Mean is average of element. 
Mean of arr[0..n-1] = Σ(arr[i]) / n 
where 0 <= i < n
Variance is sum of squared differences from the mean divided by number of elements.
Variance = Σ(arr[i] – mean)2 / n
Standard Deviation is square root of variance 
Standard Deviation = Σ(variance)
Please refer Mean, Variance and Standard Deviation for details. 
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Examples:  

Input: 6 0 
Output: 0 0 0 0 0 0  
Explanation: 
The standard deviation of 0, 0, 0, 0, 0, 0 is 0. 
Also the standard deviation of 4, 4, 4, 4, 4, 4 
is 0, we print any of the possible N elements.

Input: 3 3
Output: 0 -3.67423 3.67423 
Explanation: 
On calculating SD of these N elements,
we get standard deviation to be 3. 
            

Approach: 
If we look at the formula, we have two unknown terms one is xi and the other is mean. The main motive is to make the mean 0 so that we can get the formula for X elements. There will be two cases, one for even and one for odd. 



When N is even: 
To make mean of N elements 0, best way is to express N elements as -X +X -X +X …. Formula will be sqrt(summation of (x^2)/n), x2+x^2+x^2+………N terms, so formula turns out to be sqrt (N*(x^2)/N). N cancel out each other, so sqrt (x^2) turns out to be SD. So, we get the N elements as -SD +SD -SD +SD…… to get the mean 0. We need to print -SD +SD -SD +SD…… 

When N is odd: 
The mean of N elements will be 0. So, one element will be 0 and other N-1 elements will be -X +X -X …. Formula will be sqrt(summation of (x^2)/n), x2+x^2+x^2+………N-1 terms, so formula turns out to be sqrt((N-1)*(x^2)/N), so 
X= SD * sqrt(n/(n-1)). The n elements are 0 -X +X -X +X … 
When SD is 0 then all elements will be same, so we can print 0 for it. 

Below is the implementation of the above approach:  

C++




// CPP program to find n elements
#include <bits/stdc++.h>
using namespace std;
 
// function to print series of n elements
void series(int n, int d)
{
 
    // if S.D. is 0 then print all
    // elements as 0.
    if (d == 0) {
 
        // print n 0's
        for (int i = 0; i < n; i++)
            cout << "0 ";
 
        cout << endl;
        return;
    }
 
    // if S.D. is even
    if (n % 2 == 0) {
 
        // print -SD, +SD, -SD, +SD
        for (int i = 1; i <= n; i++) {
            cout << pow(-1, i) * d << " ";
        }
        cout << endl;
    }
    else // if odd
    {
        // convert n to a float integer
        float m = n;
        float r = (m / (m - 1));
        float g = (float)(d * (float)sqrtf(r));
 
        // print one element to be 0
        cout << "0 ";
 
        // print (n-1) elements as xi derived
        // from the formula
        for (int i = 1; i < n; i++) {
            cout << pow(-1, i) * g << " ";
        }
        cout << endl;
    }
}
 
// driver program to test the above function
int main()
{
    int n = 3, d = 3;
    series(n, d);
 
    return 0;
}

Java




// Java program to find n elements
import java.util.*;
import java.lang.*;
 
public class GfG {
 
    // function to print series of n elements
    public static void series(int n, int d)
    {
 
        // if S.D. is 0 then print all
        // elements as 0.
        if (d == 0) {
 
            // print n 0's
            for (int i = 0; i < n; i++)
                System.out.print("0 ");
            System.out.println();
            return;
        }
 
        // if S.D. is even
        if (n % 2 == 0) {
 
            // print -SD, +SD, -SD, +SD
            for (int i = 1; i <= n; i++) {
                System.out.print(Math.pow(-1, i) * d + " ");
            }
            System.out.println();
        }
        else // if odd
        {
            // convert n to a float integer
            float m = n;
            float r = (m / (m - 1));
            float g = (float)(d * (float)(Math.sqrt(r)));
 
            // print one element to be 0
            System.out.print("0 ");
 
            // print (n-1) elements as xi
            // derived from the formula
            for (int i = 1; i < n; i++) {
                System.out.print(Math.pow(-1, i) * g + " ");
            }
            System.out.println();
        }
    }
 
    // driver function
    public static void main(String args[])
    {
        int n = 3, d = 3;
        series(n, d);
    }
}
 
/* This code is contributed by Sagar Shukla */

Python3




# Python program to find n elements
import math
 
# function to print series of n elements
def series( n, d):
 
    # if S.D. is 0 then print all
    # elements as 0.
    if d == 0:
     
        # print n 0's
        for i in range(n):
            print("0", end = ' ')
        return 1
         
    # if S.D. is even
    if n % 2 == 0:
     
        # print -SD, +SD, -SD, +SD
        i = 1
        while i <= n:
            print("%.5f"%((math.pow(-1, i) * d)),
                  end =' ')
            i += 1
    else:
        # if odd
        # convert n to a float integer
        m = n
        r = (m / (m - 1))
        g = (float)(d * float(math.sqrt(r)))
         
        # print one element to be 0
        print("0 ", end = ' ')
         
        # print (n-1) elements as xi derived
        # from the formula
        i = 1
        while i < n:
            print("%.5f"%(math.pow(-1, i) * g),
                  end = ' ')
            i = i + 1
    print("\n")
 
# driver code to test the above function
n = 3
d = 3
series(n, d)
 
# This code is contributed by "Sharad_Bhardwaj".

C#




// C# program to find n elements
using System;
 
public class GfG {
 
    // function to print series of n
    // elements
    public static void series(int n, int d)
    {
 
        // if S.D. is 0 then print all
        // elements as 0.
        if (d == 0) {
 
            // print n 0's
            for (int i = 0; i < n; i++)
                Console.Write("0");
                 
            Console.WriteLine();
             
            return;
        }
 
        // if S.D. is even
        if (n % 2 == 0) {
 
            // print -SD, +SD, -SD, +SD
            for (int i = 1; i <= n; i++) {
                Console.Write(Math.Pow(-1, i)
                                   * d + " ");
            }
             
            Console.WriteLine();
        }
        else // if odd
        {
             
            // convert n to a float integer
            float m = n;
            float r = (m / (m - 1));
            float g = (float)(d *
                       (float)(Math.Sqrt(r)));
 
            // print one element to be 0
            Console.Write("0 ");
 
            // print (n-1) elements as xi
            // derived from the formula
            for (int i = 1; i < n; i++) {
                Console.Write(Math.Pow(-1, i)
                                   * g + " ");
            }
             
            Console.WriteLine();
        }
    }
 
    // driver function
    public static void Main()
    {
        int n = 3, d = 3;
         
        series(n, d);
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP program to find n elements
 
// function to print
// series of n elements
function series( $n, $d)
{
 
    // if S.D. is 0 then print all
    // elements as 0.
    if ($d == 0)
    {
 
        // print n 0's
        for ($i = 0; $i < $n;$i++)
            echo "0 ";
 
        echo "\n";
        return;
    }
 
    // if S.D. is even
    if ($n % 2 == 0)
    {
 
        // print -SD, +SD, -SD, +SD
        for ( $i = 1; $i <= $n; $i++)
        {
            echo pow(-1, $i) * $d , " ";
        }
        echo"\n";
    }
     
    // if odd
    else
    {
         
        // convert n to a
        // float integer
        $m = $n;
        $r = ($m / ($m - 1));
        $g = ($d * sqrt($r));
 
        // print one element
        // to be 0
        echo "0 ";
 
        // print (n-1) elements
        // as xi derived
        // from the formula
        for ($i = 1; $i < $n; $i++)
        {
            echo pow(-1, $i) * $g , " ";
        }
        echo"\n";
    }
}
 
    // Driver Code
    $n = 3; $d = 3;
    series($n, $d);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to find n elements
 
// Function to print series of n elements
function series(n, d)
{
     
    // If S.D. is 0 then print all
    // elements as 0.
    if (d == 0)
    {
         
        // Print n 0's
        for(let i = 0; i < n; i++)
            document.write("0 ");
             
        document.write();
        return;
    }
 
    // If S.D. is even
    if (n % 2 == 0)
    {
         
        // Print -SD, +SD, -SD, +SD
        for(let i = 1; i <= n; i++)
        {
            document.write(Math.pow(-1, i) * d + "  ");
        }
        document.write();
    }
     
    // If odd
    else
    {
         
        // Convert n to a float integer
        let m = n;
        let r = (m / (m - 1));
        let g = (d * (Math.sqrt(r)));
 
        // Print one element to be 0
        document.write("0 ");
 
        // Print (n-1) elements as xi
        // derived from the formula
        for(let i = 1; i < n; i++)
        {
            document.write(Math.pow(-1, i) * g + "  ");
        }
        document.write();
    }
}
 
// Driver Code
let n = 3, d = 3;
 
series(n, d);
 
// This code is contributed by susmitakundugoaldanga
 
</script>

Output: 

0 -3.67423 3.67423 

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :