Given N and Standard Deviation, find N elements

Given N and Standard deviation find the N elements.

Mean is average of element.
Mean of arr[0..n-1] = Σ(arr[i]) / n
where 0 <= i < n

Variance is sum of squared differences from the mean divided by number of elements.



Variance = Σ(arr[i] – mean)2 / n

Standard Deviation is square root of variance
Standard Deviation = Σ(variance)

Please refer Mean, Variance and Standard Deviation for details.

Examples:

Input: 6 0 
Output: 0 0 0 0 0 0  
Explanation: 
The standard deviation of 0, 0, 0, 0, 0, 0 is 0. 
Also the standard deviation of 4, 4, 4, 4, 4, 4 
is 0, we print any of the possible N elements.

Input: 3 3
Output: 0 -3.67423 3.67423 
Explanation: 
On calculating SD of these N elements,
we get standard deviation to be 3. 
            

Approach:
If we look at the formula, we have two unknown terms one is xi and the other is mean. The main motive is to make the mean 0 so that we can get the formula for X elements. There will be two cases, one for even and one for odd.

When N is even:
To make mean of N elements 0, best way is to express N elements as -X +X -X +X …. Formula will be sqrt(summation of (x^2)/n), x2+x^2+x^2+………N terms, so formula turns out to be sqrt (N*(x^2)/N). N cancel out each other, so sqrt (x^2) turns out to be SD. So, we get the N elements as -SD +SD -SD +SD…… to get the mean 0. We need to print -SD +SD -SD +SD……

When N is odd:
The mean of N elements will be 0. So, one element will be 0 and other N-1 elements will be -X +X -X …. Formula will be sqrt(summation of (x^2)/n), x2+x^2+x^2+………N-1 terms, so formula turns out to be sqrt((N-1)*(x^2)/N), so
X= SD * sqrt(n/(n-1)). The n elements are 0 -X +X -X +X …

When SD is 0 then all elements will be same, so we can print 0 for it.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find n elements
#include <bits/stdc++.h>
using namespace std;
  
// function to print series of n elements
void series(int n, int d)
{
  
    // if S.D. is 0 then print all
    // elements as 0.
    if (d == 0) {
  
        // print n 0's
        for (int i = 0; i < n; i++)
            cout << "0 ";
  
        cout << endl;
        return;
    }
  
    // if S.D. is even
    if (n % 2 == 0) {
  
        // print -SD, +SD, -SD, +SD
        for (int i = 1; i <= n; i++) {
            cout << pow(-1, i) * d << " ";
        }
        cout << endl;
    }
    else // if odd
    {
        // convert n to a float integer
        float m = n;
        float r = (m / (m - 1));
        float g = (float)(d * (float)sqrtf(r));
  
        // print one element to be 0
        cout << "0 ";
  
        // print (n-1) elements as xi derived
        // from the formula
        for (int i = 1; i < n; i++) {
            cout << pow(-1, i) * g << " ";
        }
        cout << endl;
    }
}
  
// driver program to test the above function
int main()
{
    int n = 3, d = 3;
    series(n, d);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find n elements
import java.util.*;
import java.lang.*;
  
public class GfG {
  
    // function to print series of n elements
    public static void series(int n, int d)
    {
  
        // if S.D. is 0 then print all
        // elements as 0.
        if (d == 0) {
  
            // print n 0's
            for (int i = 0; i < n; i++)
                System.out.print("0 ");
            System.out.println();
            return;
        }
  
        // if S.D. is even
        if (n % 2 == 0) {
  
            // print -SD, +SD, -SD, +SD
            for (int i = 1; i <= n; i++) {
                System.out.print(Math.pow(-1, i) * d + " ");
            }
            System.out.println();
        }
        else // if odd
        {
            // convert n to a float integer
            float m = n;
            float r = (m / (m - 1));
            float g = (float)(d * (float)(Math.sqrt(r)));
  
            // print one element to be 0
            System.out.print("0 ");
  
            // print (n-1) elements as xi
            // derived from the formula
            for (int i = 1; i < n; i++) {
                System.out.print(Math.pow(-1, i) * g + " ");
            }
            System.out.println();
        }
    }
  
    // driver function
    public static void main(String args[])
    {
        int n = 3, d = 3;
        series(n, d);
    }
}
  
/* This code is contributed by Sagar Shukla */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find n elements
import math
  
# function to print series of n elements
def series( n, d):
  
    # if S.D. is 0 then print all
    # elements as 0.
    if d == 0:
      
        # print n 0's
        for i in range(n):
            print("0", end = ' ')
        return 1
          
    # if S.D. is even
    if n % 2 == 0:
      
        # print -SD, +SD, -SD, +SD
        i = 1
        while i <= n:
            print("%.5f"%((math.pow(-1, i) * d)),
                  end =' ')
            i += 1
    else:
        # if odd
        # convert n to a float integer
        m = n
        r = (m / (m - 1))
        g = (float)(d * float(math.sqrt(r)))
          
        # print one element to be 0
        print("0 ", end = ' ')
          
        # print (n-1) elements as xi derived
        # from the formula
        i = 1
        while i < n:
            print("%.5f"%(math.pow(-1, i) * g),
                  end = ' ')
            i = i + 1
    print("\n")
  
# driver code to test the above function
n = 3
d = 3
series(n, d)
  
# This code is contributed by "Sharad_Bhardwaj".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find n elements
using System;
  
public class GfG {
  
    // function to print series of n
    // elements
    public static void series(int n, int d)
    {
  
        // if S.D. is 0 then print all
        // elements as 0.
        if (d == 0) {
  
            // print n 0's
            for (int i = 0; i < n; i++)
                Console.Write("0");
                  
            Console.WriteLine();
              
            return;
        }
  
        // if S.D. is even
        if (n % 2 == 0) {
  
            // print -SD, +SD, -SD, +SD
            for (int i = 1; i <= n; i++) {
                Console.Write(Math.Pow(-1, i)
                                   * d + " ");
            }
              
            Console.WriteLine();
        }
        else // if odd
        {
              
            // convert n to a float integer
            float m = n;
            float r = (m / (m - 1));
            float g = (float)(d * 
                       (float)(Math.Sqrt(r)));
  
            // print one element to be 0
            Console.Write("0 ");
  
            // print (n-1) elements as xi
            // derived from the formula
            for (int i = 1; i < n; i++) {
                Console.Write(Math.Pow(-1, i)
                                   * g + " ");
            }
              
            Console.WriteLine();
        }
    }
  
    // driver function
    public static void Main()
    {
        int n = 3, d = 3;
          
        series(n, d);
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find n elements
  
// function to print 
// series of n elements
function series( $n, $d)
{
  
    // if S.D. is 0 then print all
    // elements as 0.
    if ($d == 0)
    {
  
        // print n 0's
        for ($i = 0; $i < $n;$i++)
            echo "0 ";
  
        echo "\n";
        return;
    }
  
    // if S.D. is even
    if ($n % 2 == 0) 
    {
  
        // print -SD, +SD, -SD, +SD
        for ( $i = 1; $i <= $n; $i++) 
        {
            echo pow(-1, $i) * $d , " ";
        }
        echo"\n";
    }
      
    // if odd
    else 
    {
          
        // convert n to a 
        // float integer
        $m = $n;
        $r = ($m / ($m - 1));
        $g = ($d * sqrt($r));
  
        // print one element
        // to be 0
        echo "0 ";
  
        // print (n-1) elements 
        // as xi derived
        // from the formula
        for ($i = 1; $i < $n; $i++) 
        {
            echo pow(-1, $i) * $g , " ";
        }
        echo"\n";
    }
}
  
    // Driver Code
    $n = 3; $d = 3;
    series($n, $d);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output:

0 -3.67423 3.67423 


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.