# Given an array of size n and a number k, find all elements that appear more than n/k times

• Difficulty Level : Medium
• Last Updated : 17 Nov, 2021

Given an array of size n, find all elements in array that appear more than n/k times. For example, if the input arrays is {3, 1, 2, 2, 1, 2, 3, 3} and k is 4, then the output should be [2, 3]. Note that size of array is 8 (or n = 8), so we need to find all elements that appear more than 2 (or 8/4) times. There are two elements that appear more than two times, 2 and 3.

A simple method is to pick all elements one by one. For every picked element, count its occurrences by traversing the array, if count becomes more than n/k, then print the element. Time Complexity of this method would be O(n2).
A better solution is to use sorting. First, sort all elements using a O(nLogn) algorithm. Once the array is sorted, we can find all required elements in a linear scan of array. So overall time complexity of this method is O(nLogn) + O(n) which is O(nLogn).
Following is an interesting O(nk) solution:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

We can solve the above problem in O(nk) time using O(k-1) extra space. Note that there can never be more than k-1 elements in output (Why?). There are mainly three steps in this algorithm.

1) Create a temporary array of size (k-1) to store elements and their counts (The output elements are going to be among these k-1 elements). Following is structure of temporary array elements.

```struct eleCount {
int element;
int count;
};
struct eleCount temp[];```

This step takes O(k) time.
2) Traverse through the input array and update temp[] (add/remove an element or increase/decrease count) for every traversed element. The array temp[] stores potential (k-1) candidates at every step. This step takes O(nk) time.

3) Iterate through final (k-1) potential candidates (stored in temp[]). or every element, check if it actually has count more than n/k. This step takes O(nk) time.

The main step is step 2, how to maintain (k-1) potential candidates at every point? The steps used in step 2 are like famous game: Tetris. We treat each number as a piece in Tetris, which falls down in our temporary array temp[]. Our task is to try to keep the same number stacked on the same column (count in temporary array is incremented).

```Consider k = 4, n = 9
Given array: 3 1 2 2 2 1 4 3 3

i = 0
3 _ _
temp[] has one element, 3 with count 1

i = 1
3 1 _
temp[] has two elements, 3 and 1 with
counts 1 and 1 respectively

i = 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 1 respectively.

i = 3
- - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 2 respectively.

i = 4
- - 2
- - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 3 respectively.

i = 5
- - 2
- 1 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 2 and 3 respectively.```

Now the question arises, what to do when temp[] is full and we see a new element – we remove the bottom row from stacks of elements, i.e., we decrease count of every element by 1 in temp[]. We ignore the current element.

```i = 6
- - 2
- 1 2
temp[] has two elements, 1 and 2 with
counts as 1 and 2 respectively.

i = 7
- 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 2 respectively.

i = 8
3 - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 2, 1 and 2 respectively.```

Finally, we have at most k-1 numbers in temp[]. The elements in temp are {3, 1, 2}. Note that the counts in temp[] are useless now, the counts were needed only in step 2. Now we need to check whether the actual counts of elements in temp[] are more than n/k (9/4) or not. The elements 3 and 2 have counts more than 9/4. So we print 3 and 2.

Note that the algorithm doesn’t miss any output element. There can be two possibilities, many occurrences are together or spread across the array. If occurrences are together, then count will be high and won’t become 0. If occurrences are spread, then the element would come again in temp[]. Following is the implementation of the above algorithm.

## C++

 `// A C++ program to print elements with count more than n/k``#include ``using` `namespace` `std;` `// A structure to store an element and its current count``struct` `eleCount {``    ``int` `e; ``// Element``    ``int` `c; ``// Count``};` `// Prints elements with more``// than n/k occurrences in arr[]``// of size n. If there are no``// such elements, then it prints``// nothing.``void` `moreThanNdK(``int` `arr[], ``int` `n, ``int` `k)``{``    ``// k must be greater than``    ``// 1 to get some output``    ``if` `(k < 2)``        ``return``;` `    ``/* Step 1: Create a temporary``       ``array (contains element``       ``and count) of size k-1.``       ``Initialize count of all``       ``elements as 0 */``    ``struct` `eleCount temp[k - 1];``    ``for` `(``int` `i = 0; i < k - 1; i++)``        ``temp[i].c = 0;` `    ``/* Step 2: Process all``      ``elements of input array */``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``int` `j;` `        ``/* If arr[i] is already present in``           ``the element count array,``           ``then increment its count``         ``*/``        ``for` `(j = 0; j < k - 1; j++)``        ``{``            ``if` `(temp[j].e == arr[i])``            ``{``                ``temp[j].c += 1;``                ``break``;``            ``}``        ``}` `        ``/* If arr[i] is not present in temp[] */``        ``if` `(j == k - 1) {``            ``int` `l;` `            ``/* If there is position available``              ``in temp[], then place arr[i] in``              ``the first available position and``              ``set count as 1*/``            ``for` `(l = 0; l < k - 1; l++)``            ``{``                ``if` `(temp[l].c == 0)``                ``{``                    ``temp[l].e = arr[i];``                    ``temp[l].c = 1;``                    ``break``;``                ``}``            ``}` `            ``/* If all the position in the``               ``temp[] are filled, then decrease``               ``count of every element by 1 */``            ``if` `(l == k - 1)``                ``for` `(l = 0; l < k-1; l++)``                    ``temp[l].c -= 1;``        ``}``    ``}` `    ``/*Step 3: Check actual counts of``     ``* potential candidates in temp[]*/``    ``for` `(``int` `i = 0; i < k - 1; i++)``    ``{``        ``// Calculate actual count of elements``        ``int` `ac = 0; ``// actual count``        ``for` `(``int` `j = 0; j < n; j++)``            ``if` `(arr[j] == temp[i].e)``                ``ac++;` `        ``// If actual count is more than n/k,``       ``// then print it``        ``if` `(ac > n / k)``            ``cout << ``"Number:"` `<< temp[i].e``                 ``<< ``" Count:"` `<< ac << endl;``    ``}``}` `/* Driver code */``int` `main()``{``    ``cout << ``"First Test\n"``;``    ``int` `arr1[] = { 4, 5, 6, 7, 8, 4, 4 };``    ``int` `size = ``sizeof``(arr1) / ``sizeof``(arr1);``    ``int` `k = 3;``    ``moreThanNdK(arr1, size, k);` `    ``cout << ``"\nSecond Test\n"``;``    ``int` `arr2[] = { 4, 2, 2, 7 };``    ``size = ``sizeof``(arr2) / ``sizeof``(arr2);``    ``k = 3;``    ``moreThanNdK(arr2, size, k);` `    ``cout << ``"\nThird Test\n"``;``    ``int` `arr3[] = { 2, 7, 2 };``    ``size = ``sizeof``(arr3) / ``sizeof``(arr3);``    ``k = 2;``    ``moreThanNdK(arr3, size, k);` `    ``cout << ``"\nFourth Test\n"``;``    ``int` `arr4[] = { 2, 3, 3, 2 };``    ``size = ``sizeof``(arr4) / ``sizeof``(arr4);``    ``k = 3;``    ``moreThanNdK(arr4, size, k);` `    ``return` `0;``}`

## Java

 `// A Java program to print elements with count more than n/k``import` `java.util.*;` `class` `GFG{` `// A structure to store an element and its current count``static` `class` `eleCount {``    ``int` `e; ``// Element``    ``int` `c; ``// Count``};` `// Prints elements with more``// than n/k occurrences in arr[]``// of size n. If there are no``// such elements, then it prints``// nothing.``static` `void` `moreThanNdK(``int` `arr[], ``int` `n, ``int` `k)``{``    ``// k must be greater than``    ``// 1 to get some output``    ``if` `(k < ``2``)``        ``return``;` `    ``/* Step 1: Create a temporary``       ``array (contains element``       ``and count) of size k-1.``       ``Initialize count of all``       ``elements as 0 */``    ``eleCount []temp = ``new` `eleCount[k - ``1``];``    ``for` `(``int` `i = ``0``; i < k - ``1``; i++)``        ``temp[i] = ``new` `eleCount();``    ``for` `(``int` `i = ``0``; i < k - ``1``; i++) {``        ``temp[i].c = ``0``;``    ``}``  ` `    ``/* Step 2: Process all``      ``elements of input array */``    ``for` `(``int` `i = ``0``; i < n; i++)``    ``{``        ``int` `j;` `        ``/* If arr[i] is already present in``           ``the element count array,``           ``then increment its count``         ``*/``        ``for` `(j = ``0``; j < k - ``1``; j++)``        ``{``            ``if` `(temp[j].e == arr[i])``            ``{``                ``temp[j].c += ``1``;``                ``break``;``            ``}``        ``}` `        ``/* If arr[i] is not present in temp[] */``        ``if` `(j == k - ``1``) {``            ``int` `l;` `            ``/* If there is position available``              ``in temp[], then place arr[i] in``              ``the first available position and``              ``set count as 1*/``            ``for` `(l = ``0``; l < k - ``1``; l++)``            ``{``                ``if` `(temp[l].c == ``0``)``                ``{``                    ``temp[l].e = arr[i];``                    ``temp[l].c = ``1``;``                    ``break``;``                ``}``            ``}` `            ``/* If all the position in the``               ``temp[] are filled, then decrease``               ``count of every element by 1 */``            ``if` `(l == k - ``1``)``                ``for` `(l = ``0``; l < k-``1``; l++)``                    ``temp[l].c -= ``1``;``        ``}``    ``}` `    ``/*Step 3: Check actual counts of``     ``* potential candidates in temp[]*/``    ``for` `(``int` `i = ``0``; i < k - ``1``; i++)``    ``{``      ` `        ``// Calculate actual count of elements``        ``int` `ac = ``0``; ``// actual count``        ``for` `(``int` `j = ``0``; j < n; j++)``            ``if` `(arr[j] == temp[i].e)``                ``ac++;` `        ``// If actual count is more than n/k,``       ``// then print it``        ``if` `(ac > n / k)``            ``System.out.print(``"Number:"` `+  temp[i].e``                ``+ ``" Count:"` `+  ac +``"\n"``);``    ``}``}` `/* Driver code */``public` `static` `void` `main(String[] args)``{``    ``System.out.print(``"First Test\n"``);``    ``int` `arr1[] = { ``4``, ``5``, ``6``, ``7``, ``8``, ``4``, ``4` `};``    ``int` `size = arr1.length;``    ``int` `k = ``3``;``    ``moreThanNdK(arr1, size, k);` `    ``System.out.print(``"\nSecond Test\n"``);``    ``int` `arr2[] = { ``4``, ``2``, ``2``, ``7` `};``    ``size = arr2.length;``    ``k = ``3``;``    ``moreThanNdK(arr2, size, k);` `    ``System.out.print(``"\nThird Test\n"``);``    ``int` `arr3[] = { ``2``, ``7``, ``2` `};``    ``size = arr3.length;``    ``k = ``2``;``    ``moreThanNdK(arr3, size, k);` `    ``System.out.print(``"\nFourth Test\n"``);``    ``int` `arr4[] = { ``2``, ``3``, ``3``, ``2` `};``    ``size = arr4.length;``    ``k = ``3``;``    ``moreThanNdK(arr4, size, k);` `}``}` `// This code contributed by Princi Singh .`

## Python3

 `# A Python3 program to print elements with``# count more than n/k` `# Prints elements with more than n/k``# occurrences in arrof size n. If``# there are no such elements, then``# it prints nothing.`  `def` `moreThanNdK(arr, n, k):` `    ``# k must be greater than 1``    ``# to get some output``    ``if` `(k < ``2``):``        ``return` `    ``# Step 1: Create a temporary array``    ``# (contains element and count) of``    ``# size k-1. Initialize count of all``    ``# elements as 0``    ``temp ``=` `[[``0` `for` `i ``in` `range``(``2``)]``            ``for` `i ``in` `range``(k)]` `    ``for` `i ``in` `range``(k ``-` `1``):``        ``temp[i][``0``] ``=` `0` `    ``# Step 2: Process all elements``    ``# of input array``    ``for` `i ``in` `range``(n):``        ``j ``=` `0` `        ``# If arr[i] is already present in``        ``# the element count array, then``        ``# increment its count``        ``while` `j < k ``-` `1``:``            ``if` `(temp[j][``1``] ``=``=` `arr[i]):``                ``temp[j][``0``] ``+``=` `1``                ``break` `            ``j ``+``=` `1` `        ``# If arr[i] is not present in temp``        ``if` `(j ``=``=` `k ``-` `1``):``            ``l ``=` `0` `            ``# If there is position available``            ``# in temp[], then place arr[i]``            ``# in the first available position``            ``# and set count as 1*/``            ``while` `l < k ``-` `1``:``                ``if` `(temp[l][``0``] ``=``=` `0``):``                    ``temp[l][``1``] ``=` `arr[i]``                    ``temp[l][``0``] ``=` `1``                    ``break` `                ``l ``+``=` `1` `            ``# If all the position in the``            ``# tempare filled, then decrease``            ``# count of every element by 1``            ``if` `(l ``=``=` `k ``-` `1``):``                ``while` `l < k:``                    ``temp[l][``0``] ``-``=` `1``                    ``l ``+``=` `1` `    ``# Step 3: Check actual counts``    ``# of potential candidates in temp[]``    ``for` `i ``in` `range``(k ``-` `1``):` `        ``# Calculate actual count of elements``        ``ac ``=` `0`  `# Actual count``        ``for` `j ``in` `range``(n):``            ``if` `(arr[j] ``=``=` `temp[i][``1``]):``                ``ac ``+``=` `1` `        ``# If actual count is more``        ``# than n/k, then print``        ``if` `(ac > n ``/``/` `k):``            ``print``(``"Number:"``,``                  ``temp[i][``1``],``                  ``" Count:"``, ac)`  `# Driver code``if` `__name__ ``=``=` `'__main__'``:` `    ``print``(``"First Test"``)``    ``arr1 ``=` `[``4``, ``5``, ``6``, ``7``, ``8``, ``4``, ``4``]``    ``size ``=` `len``(arr1)``    ``k ``=` `3``    ``moreThanNdK(arr1, size, k)` `    ``print``(``"Second Test"``)``    ``arr2 ``=` `[``4``, ``2``, ``2``, ``7``]``    ``size ``=` `len``(arr2)``    ``k ``=` `3``    ``moreThanNdK(arr2, size, k)` `    ``print``(``"Third Test"``)``    ``arr3 ``=` `[``2``, ``7``, ``2``]``    ``size ``=` `len``(arr3)``    ``k ``=` `2``    ``moreThanNdK(arr3, size, k)` `    ``print``(``"Fourth Test"``)``    ``arr4 ``=` `[``2``, ``3``, ``3``, ``2``]``    ``size ``=` `len``(arr4)``    ``k ``=` `3``    ``moreThanNdK(arr4, size, k)` `# This code is contributed by mohit kumar 29`

## C#

 `// A C# program to print elements``// with count more than n/k``using` `System;``class` `GFG``{` `// A structure to store an element``// and its current count``public` `class` `eleCount {``    ``public` `int` `e; ``// Element``    ``public` `int` `c; ``// Count``};` `// Prints elements with more``// than n/k occurrences in []arr``// of size n. If there are no``// such elements, then it prints``// nothing.``static` `void` `moreThanNdK(``int` `[]arr, ``int` `n, ``int` `k)``{``  ` `    ``// k must be greater than``    ``// 1 to get some output``    ``if` `(k < 2)``        ``return``;` `    ``/* Step 1: Create a temporary``       ``array (contains element``       ``and count) of size k-1.``       ``Initialize count of all``       ``elements as 0 */``    ``eleCount []temp = ``new` `eleCount[k - 1];``    ``for` `(``int` `i = 0; i < k - 1; i++)``        ``temp[i] = ``new` `eleCount();``    ``for` `(``int` `i = 0; i < k - 1; i++)``    ``{``        ``temp[i].c = 0;``    ``}``  ` `    ``/* Step 2: Process all``      ``elements of input array */``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``int` `j;` `        ``/* If arr[i] is already present in``           ``the element count array,``           ``then increment its count``         ``*/``        ``for` `(j = 0; j < k - 1; j++)``        ``{``            ``if` `(temp[j].e == arr[i])``            ``{``                ``temp[j].c += 1;``                ``break``;``            ``}``        ``}` `        ``/* If arr[i] is not present in []temp */``        ``if` `(j == k - 1)``        ``{``            ``int` `l;` `            ``/* If there is position available``              ``in []temp, then place arr[i] in``              ``the first available position and``              ``set count as 1*/``            ``for` `(l = 0; l < k - 1; l++)``            ``{``                ``if` `(temp[l].c == 0)``                ``{``                    ``temp[l].e = arr[i];``                    ``temp[l].c = 1;``                    ``break``;``                ``}``            ``}` `            ``/* If all the position in the``               ``[]temp are filled, then decrease``               ``count of every element by 1 */``            ``if` `(l == k - 1)``                ``for` `(l = 0; l < k-1; l++)``                    ``temp[l].c -= 1;``        ``}``    ``}` `    ``/*Step 3: Check actual counts of``     ``* potential candidates in []temp*/``    ``for` `(``int` `i = 0; i < k - 1; i++)``    ``{``      ` `        ``// Calculate actual count of elements``        ``int` `ac = 0; ``// actual count``        ``for` `(``int` `j = 0; j < n; j++)``            ``if` `(arr[j] == temp[i].e)``                ``ac++;` `        ``// If actual count is more than n/k,``       ``// then print it``        ``if` `(ac > n / k)``            ``Console.Write(``"Number:"` `+  temp[i].e``                ``+ ``" Count:"` `+  ac + ``"\n"``);``    ``}``}` `/* Driver code */``public` `static` `void` `Main(String[] args)``{``    ``Console.Write(``"First Test\n"``);``    ``int` `[]arr1 = { 4, 5, 6, 7, 8, 4, 4 };``    ``int` `size = arr1.Length;``    ``int` `k = 3;``    ``moreThanNdK(arr1, size, k);` `    ``Console.Write(``"\nSecond Test\n"``);``    ``int` `[]arr2 = { 4, 2, 2, 7 };``    ``size = arr2.Length;``    ``k = 3;``    ``moreThanNdK(arr2, size, k);` `    ``Console.Write(``"\nThird Test\n"``);``    ``int` `[]arr3 = { 2, 7, 2 };``    ``size = arr3.Length;``    ``k = 2;``    ``moreThanNdK(arr3, size, k);` `    ``Console.Write(``"\nFourth Test\n"``);``    ``int` `[]arr4 = { 2, 3, 3, 2 };``    ``size = arr4.Length;``    ``k = 3;``    ``moreThanNdK(arr4, size, k);``}``}` `// This code is contributed by 29AjayKumar`
Output

```First Test
Number:4 Count:3

Second Test
Number:2 Count:2

Third Test
Number:2 Count:2

Fourth Test
Number:2 Count:2
Number:3 Count:2```

Time Complexity: O(nk)
Auxiliary Space: O(k)
Generally asked variations of this problem are, find all elements that appear n/3 times or n/4 times in O(n) time complexity and O(1) extra space.

Another Approach:

Hashing can also be an efficient solution. With a good hash function, we can solve the above problem in O(n) time on average. Extra space required hashing would be higher than O(k). Also, hashing cannot be used to solve the above variations with O(1) extra space.

Below is the implementation of the above idea:

## C++

 `// C++ code to find elements whose``// frequency yis more than n/k``#include``using` `namespace` `std;` `void` `morethanNbyK(``int` `arr[], ``int` `n, ``int` `k)``{``    ``int` `x = n / k;``    ` `      ``// unordered_map initialization``    ``unordered_map<``int``, ``int``> freq;` `    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``freq[arr[i]]++;``    ``}``  ` `      ``// Traversing the map``    ``for``(``auto` `i : freq)``    ``{``        ` `        ``// Checking if value of a key-value pair``        ``// is greater than x (where x=n/k)``        ``if` `(i.second > x)``        ``{``            ` `            ``// Print the key of whose value``            ``// is greater than x``            ``cout << i.first << endl;``        ``}``    ``}``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 1, 2, 2, 3, 5,``                  ``4, 2, 2, 3, 1, 1, 1 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `k = 4;``    ` `    ``morethanNbyK(arr, n, k);` `    ``return` `0;``}` `// This code is contributed by chayandas018`

## Java

 `// Java Code to find elements whose``// frequency yis more than n/k``import` `java.util.*;` `public` `class` `Main` `{``    ``public` `static` `void` `morethanNdK(``int` `a[], ``int` `n, ``int` `k)``    ``{``        ``int` `x = n / k;``       ` `        ``// Hash map initialization``        ``HashMap y = ``new` `HashMap<>();``      ` `        ``// count the frequency of each element.``        ``for` `(``int` `i = ``0``; i < n; i++)``        ``{``            ``// is element doesn't exist in hash table``            ``if` `(!y.containsKey(a[i]))``                ``y.put(a[i], ``1``);``          ` `          ` `            ``// if lement does exist in the hash table``            ``else``            ``{``                ``int` `count = y.get(a[i]);``                ``y.put(a[i], count + ``1``);``            ``}``        ``}` `        ``// iterate over each element in the hash table``        ``// and check their frequency, if it is more than``        ``// n/k, print it.``        ``for` `(Map.Entry m : y.entrySet())``        ``{``            ``Integer temp = (Integer)m.getValue();``            ``if` `(temp > x)``                ``System.out.println(m.getKey());``        ``}``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{` `        ``int` `a[] = ``new` `int``[] { ``1``, ``1``, ``2``, ``2``, ``3``, ``5``, ``4``,``                              ``2``, ``2``, ``3``, ``1``, ``1``, ``1` `};``        ``int` `n = ``12``;``        ``int` `k = ``4``;``        ``morethanNdK(a, n, k);``    ``}``}`

## Python3

 `# Python3 code to find elements whose``# frequency yis more than n/k``def` `morethanNbyK(arr, n, k) :``    ``x ``=` `n ``/``/` `k``     ` `    ``# unordered_map initialization``    ``freq ``=` `{}`` ` `    ``for` `i ``in` `range``(n) :   ``        ``if` `arr[i] ``in` `freq :``            ``freq[arr[i]] ``+``=` `1``        ``else` `:``            ``freq[arr[i]] ``=` `1``       ` `    ``# Traversing the map``    ``for` `i ``in` `freq :``         ` `        ``# Checking if value of a key-value pair``        ``# is greater than x (where x=n/k)``        ``if` `(freq[i] > x) :``             ` `            ``# Print the key of whose value``            ``# is greater than x``            ``print``(i)` `# Driver code           ``arr ``=` `[ ``1``, ``1``, ``2``, ``2``, ``3``, ``5``, ``4``, ``2``, ``2``, ``3``, ``1``, ``1``, ``1` `]``n ``=` `len``(arr)``k ``=` `4`` ` `morethanNbyK(arr, n, k)` `# This code is contributed by mohit kumar 29`

## C#

 `// C# code to find elements whose``// frequency yis more than n/k``using` `System;``using` `System.Collections.Generic;` `class` `GFG{``    ` `public` `static` `void` `morethanNdK(``int` `[]a, ``int` `n,``                               ``int` `k)``{``    ``int` `x = n / k;``    ` `    ``// Hash map initialization``    ``Dictionary<``int``,``               ``int``> y = ``new` `Dictionary<``int``,``                                       ``int``>();``                                       ` `    ``// Count the frequency of each element.``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ` `        ``// Is element doesn't exist in hash table``        ``if` `(!y.ContainsKey(a[i]))``            ``y.Add(a[i], 1);``            ` `        ``// If lement does exist in the hash table``        ``else``        ``{``            ``int` `count = y[a[i]];``            ``y[a[i]] =  count + 1;``        ``}``    ``}` `    ``// Iterate over each element in the hash table``    ``// and check their frequency, if it is more than``    ``// n/k, print it.``    ``foreach``(KeyValuePair<``int``, ``int``> m ``in` `y)``    ``{``        ``int` `temp = (``int``)m.Value;``        ``if` `(temp > x)``            ``Console.WriteLine(m.Key);``    ``}``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]a = ``new` `int``[]{ 1, 1, 2, 2, 3, 5, 4,``                         ``2, 2, 3, 1, 1, 1 };``    ``int` `n = 12;``    ``int` `k = 4;``    ` `    ``morethanNdK(a, n, k);``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``

Output
```1
2```

Method #2:Using Built-in Python functions:

• Count the frequencies of every element using Counter() function.
• Traverse the frequency array and print all the elements which occur at more than n/k times.

Below is the implementation:

## C++

 `// C++ implementation``#include ``using` `namespace` `std;` `// Function to find the number of array``// elements with frequency more than n/k times``void` `printElements(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// Calculating n/k``    ``int` `x = n / k;` `    ``// Counting frequency of every``    ``// element using Counter``    ``map<``int``, ``int``> mp;``    ``for` `(``int` `i = 0; i < n; i++)``        ``mp[arr[i]] += 1;` `    ``// Traverse the map and print all``    ``// the elements with occurrence``    ``// more than n/k times``    ``for` `(``int` `it = 0; it < mp.size(); it++) {``        ``if` `(mp[it] > x)``            ``cout << (it) << endl;``    ``}``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 1, 2, 2, 3, 5, 4, 2, 2, 3, 1, 1, 1 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `k = 4;` `    ``printElements(arr, n, k);``}` `// This code is contributed by ukasp.`

## Java

 `// Java implementation``import` `java.util.*;` `class` `GFG {` `    ``// Function to find the number of array``    ``// elements with frequency more than n/k times``    ``static` `void` `printElements(``int` `arr[], ``int` `n, ``int` `k)``    ``{` `        ``// Calculating n/k``        ``int` `x = n / k;` `        ``// Counting frequency of every``        ``// element using Counter``        ``TreeMap mp``            ``= ``new` `TreeMap();``        ``for` `(``int` `i = ``0``; i < n; i++)``            ``mp.put(arr[i],``                   ``mp.getOrDefault(arr[i], ``0``) + ``1``);` `        ``// Traverse the map and print all``        ``// the elements with occurrence``        ``// more than n/k times``        ``for` `(Map.Entry m:mp.entrySet()) {``            ``if` `((``int``)m.getValue() > x)``              ``System.out.println(m.getKey());``        ``}``    ``}` `  ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[]``            ``= { ``1``, ``1``, ``2``, ``2``, ``3``, ``5``, ``4``, ``2``, ``2``, ``3``, ``1``, ``1``, ``1` `};``        ``int` `n = arr.length;``        ``int` `k = ``4``;` `        ``printElements(arr, n, k);``        ` `    ``}``}` ` ``// This code is contributed by rajsanghavi9.`

## Python3

 `# Python3 implementation``from` `collections ``import` `Counter` `# Function to find the number of array``# elements with frequency more than n/k times``def` `printElements(arr, n, k):` `    ``# Calculating n/k``    ``x ``=` `n``/``/``k` `    ``# Counting frequency of every``    ``# element using Counter``    ``mp ``=` `Counter(arr)``    ` `    ``# Traverse the map and print all``    ``# the elements with occurrence``    ``# more than n/k times``    ``for` `it ``in` `mp:``        ``if` `mp[it] > x:``            ``print``(it)`  `# Driver code``arr ``=` `[``1``, ``1``, ``2``, ``2``, ``3``, ``5``, ``4``, ``2``, ``2``, ``3``, ``1``, ``1``, ``1``]``n ``=` `len``(arr)``k ``=` `4` `printElements(arr, n, k)` `# This code is contributed by vikkycirus`

## C#

 `// C# implementation``using` `System;``using` `System.Collections.Generic;` `public` `class` `GFG {` `    ``// Function to find the number of array``    ``// elements with frequency more than n/k times``    ``static` `void` `printElements(``int``[] arr, ``int` `n, ``int` `k)``    ``{` `        ``// Calculating n/k``        ``int` `x = n / k;` `        ``// Counting frequency of every``        ``// element using Counter``        ``Dictionary<``int``, ``int``> mp``            ``= ``new` `Dictionary<``int``, ``int``>();``        ``for` `(``int` `i = 0; i < n; i++) {``            ``if` `(mp.ContainsKey(arr[i]))``                ``mp[arr[i]] = mp[arr[i]] + 1;``            ``else``                ``mp.Add(arr[i], 1);``        ``}` `        ``foreach``(KeyValuePair<``int``, ``int``> entry ``in` `mp)``        ``{``            ``if` `(entry.Value > x) {``                ``Console.WriteLine(entry.Key);``            ``}``        ``}``        ``// Traverse the map and print all``        ``// the elements with occurrence``        ``// more than n/k times``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int``[] arr``            ``= { 1, 1, 2, 2, 3, 5, 4, 2, 2, 3, 1, 1, 1 };``        ``int` `n = arr.Length;``        ``int` `k = 4;` `        ``printElements(arr, n, k);``    ``}``}` `// This code is contributed by gauravrajput1`

## Javascript

 ``

Output:

```1
2```

Time Complexity: O(N)
Auxiliary Space: O(N)

?list=PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p

My Personal Notes arrow_drop_up