Gill’s 4th Order Method to solve Differential Equations

Given the following inputs:

  • An ordinary differential equation that defines the value of dy/dx in the form x and y.

    \LARGE \frac{dy}{dx} = f(x, y)

  • Initial value of y, i.e., y(0).

    \LARGE y(0)= y_o

The task is to find the value of unknown function y at a given point x, i.e. y(x).

Examples:

Input: x0 = 0, y = 3.0, x = 5.0, h = 0.2
Output: y(x) = 3.410426

Input: x0 = 0, y = 1, x = 3, h = 0.3
Output: y(x) = 1.669395



Approach:
Gill’s method is used to find an approximate value of y for a given x. Below is the formula used to compute next value yn+1 from previous value yn.
Therefore:

yn+1 = value of y at (x = n + 1)
yn = value of y at (x = n)
where
  0 ≤ n ≤ (x - x0)/h
  h is step height
  xn+1 = x0 + h

The essential formula to compute the value of y(n+1):

\LARGE K_{1} = h*f(x_{n}, y_{n})

\LARGE K_{2} = h*f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)

\LARGE K_{3} = h*f[x_n + \frac{1}{2}h, y_n + \frac{1}{2}(-1 + \sqrt{2})k_1 + (1 - \frac{1}{2}\sqrt{2})k_2]

\LARGE K_{4} = h*f[x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2 + (1 + \frac{1}{2}\sqrt{2})k_3]

\LARGE y_{n+1} = y_{n} + \frac{1}/{6}[K_1 + (2 - \sqrt{2})K_{2} + (2 + \sqrt{2})K_3 + K_4 ] + Error Terms

The formula basically computes the next value yn+1 using current yn:

  • K1 is the increment based on the slope at the beginning of the interval, using y.
  • K2 is the increment based on the slope, using
    \LARGE (y + \frac{1}{2}(K_1*h))
  • K3 is the increment based on the slope, using
    \LARGE (y + \frac{1}{2}(-1 + \sqrt{2})K_1 + (1 - \frac{1}{2}\sqrt{2})K_2)
  • K4 is the increment based on the slope, using
    (y - \frac{1}{2}\sqrt{2}K_2 + (1 + \frac{1}{2}\sqrt{2})K_3)

The method is a fourth-order method, meaning that the local truncation error is of the order of O(h5).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement Gill's method
  
#include <bits/stdc++.h>
using namespace std;
  
// A sample differential equation
// "dy/dx = (x - y)/2"
float dydx(float x, float y)
{
    return (x - y) / 2;
}
  
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
float Gill(float x0, float y0,
        float x, float h)
{
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
  
    // Value of K_i
    float k1, k2, k3, k4;
  
    // Initial value of y(0)
    float y = y0;
  
    // Iterate for number of iteration
    for (int i = 1; i <= n; i++) {
  
        // Apply Gill's Formulas to
        // find next value of y
  
        // Value of K1
        k1 = h * dydx(x0, y);
  
        // Value of K2
        k2 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * k1);
  
        // Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * (-1 + sqrt(2)) * k1
                        + k2 * (1 - 0.5 * sqrt(2)));
  
        // Value of K4
        k4 = h * dydx(x0 + h,
                    y - (0.5 * sqrt(2)) * k2
                        + k3 * (1 + 0.5 * sqrt(2)));
  
        // Find the next value of y(n+1)
        // using y(n) and values of K in
        // the above steps
        y = y + (1.0 / 6) * (k1 + (2 - sqrt(2)) * k2 
                            + (2 + sqrt(2)) * k3 + k4);
  
        // Update next value of x
        x0 = x0 + h;
    }
  
    // Return the final value of dy/dx
    return y;
}
  
// Driver Code
int main()
{
    float x0 = 0, y = 3.0,
        x = 5.0, h = 0.2;
  
    printf("y(x) = %.6f",
        Gill(x0, y, x, h));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement Gill's method
class GFG{
  
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
  
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
      
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
  
    // Value of K_i
    double k1, k2, k3, k4;
  
    // Initial value of y(0)
    double y = y0;
  
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
          
       // Apply Gill's Formulas to
       // find next value of y
         
       // Value of K1
       k1 = h * dydx(x0, y);
         
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
         
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.sqrt(2)));
         
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.sqrt(2)));
         
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.sqrt(2)) * 
                            k2 + (2 + Math.sqrt(2)) *
                            k3 + k4);
         
       // Update next value of x
       x0 = x0 + h;
    }
  
    // Return the final value of dy/dx
    return y;
}
  
// Driver Code
public static void main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
  
    System.out.printf("y(x) = %.6f", Gill(x0, y, x, h));
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement Gill's method
from math import sqrt
  
# A sample differential equation
# "dy/dx = (x - y)/2"
def dydx(x, y):
    return (x - y) / 2
  
# Finds value of y for a given x
# using step size h and initial
# value y0 at x0
def Gill(x0, y0, x, h):
      
    # Count number of iterations
    # using step size or height h
    n = ((x - x0) / h)
  
    # Initial value of y(0)
    y = y0
  
    # Iterate for number of iteration
    for i in range(1, int(n + 1), 1):
          
        # Apply Gill's Formulas to
        # find next value of y
  
        # Value of K1
        k1 = h * dydx(x0, y)
  
        # Value of K2
        k2 = h * dydx(x0 + 0.5 * h, 
                       y + 0.5 * k1)
  
        # Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                       y + 0.5 * (-1 + sqrt(2)) * 
                      k1 + k2 * (1 - 0.5 * sqrt(2)))
  
        # Value of K4
        k4 = h * dydx(x0 + h, y - (0.5 * sqrt(2)) *
                    k2 + k3 * (1 + 0.5 * sqrt(2)))
  
        # Find the next value of y(n+1)
        # using y(n) and values of K in
        # the above steps
        y = y + (1 / 6) * (k1 + (2 - sqrt(2)) * 
                           k2 + (2 + sqrt(2)) *
                           k3 + k4)
  
        # Update next value of x
        x0 = x0 + h
  
    # Return the final value of dy/dx
    return y
  
# Driver Code
if __name__ == '__main__':
      
    x0 = 0
    y = 3.0
    x = 5.0
    h = 0.2
  
    print("y(x) =", round(Gill(x0, y, x, h), 6))
  
# This code is contributed by Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement Gill's method
using System;
  
class GFG{
   
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
   
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
       
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
   
    // Value of K_i
    double k1, k2, k3, k4;
   
    // Initial value of y(0)
    double y = y0;
   
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
           
       // Apply Gill's Formulas to
       // find next value of y
          
       // Value of K1
       k1 = h * dydx(x0, y);
          
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
          
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.Sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.Sqrt(2)));
          
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.Sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.Sqrt(2)));
          
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.Sqrt(2)) * 
                            k2 + (2 + Math.Sqrt(2)) *
                            k3 + k4);
          
       // Update next value of x
       x0 = x0 + h;
    }
   
    // Return the final value of dy/dx
    return y;
}
   
// Driver Code
public static void Main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
   
    Console.Write("y(x) = {0:F6}", Gill(x0, y, x, h));
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


Output:

y(x) = 3.410426

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.