Getting Kernel Density Estimates in R Programming – density() Function
density()
function in R Language is used to compute kernel density estimates.
Syntax: density(x)
Parameters:
x: number vector
Example 1:
# R program to illustrate # density function # Generating 10 numbers randomly x < - stats::rnorm( 10 ) # Getting 10 random number x # Calling density() function d < - density(x) # Getting kernel density estimates d |
Output:
[1] -0.89243190 -0.76257379 1.17066825 0.09418077 1.08321504 -0.41264708 [7] 0.39009942 0.69991113 -0.82339069 -0.68621705 Call: density.default(x = x) Data: x (10 obs.); Bandwidth 'bw' = 0.4594 x y Min. :-2.2706 Min. :0.001546 1st Qu.:-1.0657 1st Qu.:0.047506 Median : 0.1391 Median :0.243764 Mean : 0.1391 Mean :0.207189 3rd Qu.: 1.3440 3rd Qu.:0.312477 Max. : 2.5488 Max. :0.434704
Example 2:
# R program to illustrate # density function # Generating number 1 to 10 x < - seq( 1 , 10 ) x # Calling density() function d < - density(x) # Getting kernel density estimates d |
Output:
[1] 1 2 3 4 5 6 7 8 9 10 Call: density.default(x = x) Data: x (10 obs.); Bandwidth 'bw' = 1.719 x y Min. :-4.1579 Min. :0.0003034 1st Qu.: 0.6711 1st Qu.:0.0092711 Median : 5.5000 Median :0.0538486 Mean : 5.5000 Mean :0.0517052 3rd Qu.:10.3289 3rd Qu.:0.0936045 Max. :15.1579 Max. :0.0997741
Please Login to comment...