Given a Pandas dataframe, we need to find the frequency counts of each item in one or more columns of this dataframe. This can be achieved in multiple ways:
Method #1: Using Series.value_counts()
This method is applicable to pandas.Series object. Since each DataFrame object is a collection of Series object, we can apply this method to get the frequency counts of values in one column.
# importing pandas as pd import pandas as pd # sample dataframe df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' , 'bar' , 'bar' , 'foo' , 'bar' ], 'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] }) # frequency count of column A count = df[ 'A' ].value_counts() print (count) |
Output:
Method #2: Using GroupBy.count()
This method can be used to count frequencies of objects over single columns. After grouping a DataFrame object on one column, we can apply count()
method on the resulting groupby object to get a DataFrame object containing frequency count.
# importing pandas as pd import pandas as pd # sample dataframe df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' , 'bar' , 'bar' , 'foo' , 'bar' ], 'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] }) # Multi-column frequency count count = df.groupby([ 'A' ]).count() print (count) |
Output:
Method #3: Using GroupBy.size()
This method can be used to count frequencies of objects over single or multiple columns. After grouping a DataFrame object on one or more columns, we can apply size()
method on the resulting groupby object to get a Series object containing frequency count.
# importing pandas as pd import pandas as pd # sample dataframe df = pd.DataFrame({ 'A' : [ 'foo' , 'bar' , 'g2g' , 'g2g' , 'g2g' , 'bar' , 'bar' , 'foo' , 'bar' ], 'B' : [ 'a' , 'b' , 'a' , 'b' , 'b' , 'b' , 'a' , 'a' , 'b' ] }) # Multi-column frequency count count = df.groupby([ 'A' , 'B' ]).size() print (count) |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.