Skip to content
Related Articles
Open in App
Not now

Related Articles

Get the first 3 rows of a given DataFrame

Improve Article
Save Article
  • Last Updated : 20 Aug, 2020
Improve Article
Save Article

Let us first create a dataframe and then we will try to get first 3 rows of this dataframe using several methods.

Code: Creating a Dataframe.

Python3




# import pandas library
import pandas as pd
  
# dictionary
record = {
  "Name": ["Tom", "Jack", "Lucy",
           "Bob", "Jerry", "Alice",
           "Thomas", "Barbie"],
    
   "Marks": [9, 19, 20
             17, 11, 18,
             5, 8], 
    
  "Status": ["Fail", "Pass", "Pass",
             "Pass","Pass", "Pass",
             "Fail", "Fail"]}
  
# converting record into
# pandas dataframe
df = pd.DataFrame(record)
  
# printing whole dataframe
df

Output:

Dataframe

Output of above code: Dataframe created

Getting first 3 Rows of the above Dataframe :

Method 1: Using head(n) method.

This method returns top n rows of the dataframe where n is an integer value and it specifies the number of rows to be displayed. The default value of n is 5 therefore, head function without arguments gives the first five rows of the dataframe as an output. So to get first three rows of the dataframe, we can assign the value of n as ‘3’. 

Syntax: Dataframe.head(n)

Below is the code for getting first three rows of the dataframe using head() method:

Python3




# import pandas library
import pandas as pd
  
# dictionary
record = {
  "Name": ["Tom", "Jack", "Lucy",
           "Bob", "Jerry", "Alice",
           "Thomas", "Barbie"],
    
   "Marks": [9, 19, 20
             17, 11, 18,
             5, 8], 
    
  "Status": ["Fail", "Pass", "Pass",
             "Pass","Pass", "Pass",
             "Fail", "Fail"]}
  
# converting record into
# pandas dataframe
df = pd.DataFrame(record)
  
# select first 3 rows
# from the dataframe
df1 = df.head(3)
  
# show the dataframe
df1

Output:

Output of above code:- first three rows of the dataframe using head() function

Method 2: Using iloc[ ].

This can be used to slice a dataframe by using the starting index and ending index of the sliced dataframe that we want.

Syntax: dataframe.iloc[statrt_index, end_index+1]

So if we want first three rows, i.e. from index 0 to index 2, we can use the following code:

Python3




# import pandas library
import pandas as pd
  
# dictionary
record = {
  "Name": ["Tom", "Jack", "Lucy",
           "Bob", "Jerry", "Alice",
           "Thomas", "Barbie"],
    
   "Marks": [9, 19, 20
             17, 11, 18,
             5, 8], 
    
  "Status": ["Fail", "Pass", "Pass",
             "Pass","Pass", "Pass",
             "Fail", "Fail"]}
  
# converting record into
# pandas dataframe
df = pd.DataFrame(record)
  
# select first 3 rows
# from dataframe
df2 = df.iloc[0:3]
  
# show the dataframe
df2

First three rows of the dataframe using iloc[] method

Output of above code:- First three rows of the dataframe using iloc[] method

Method 3: Using index of the rows.

 iloc[ ] method can also be used by directly stating the indices of the rows we want in the iloc method. Say to get row with indices m and n iloc[ ] can be used as:

Syntax: Dataframe.iloc [ [m,n] ]

Following is the code to get first three rows of the dataframe using this method:

Python




# import pandas library
import pandas as pd
  
# dictionary
record = {
  "Name": ["Tom", "Jack", "Lucy",
           "Bob", "Jerry", "Alice",
           "Thomas", "Barbie"],
    
   "Marks": [9, 19, 20
             17, 11, 18,
             5, 8], 
    
  "Status": ["Fail", "Pass", "Pass",
             "Pass","Pass", "Pass",
             "Fail", "Fail"]}
  
# converting record into
# pandas dataframe
df = pd.DataFrame(record)
  
# select first 3 rows 
# of the dataframe
df3 = df.iloc[[0, 1, 2]]
  
# show the dataframe
df3

Output:

First three rows of the dataframe using iloc and indices of the desired rows.

Output of the above code:- First three rows of the dataframe using iloc and indices of the desired rows.


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!