Skip to content
Related Articles

Related Articles

Improve Article
Generating numbers that are divisor of their right-rotations
  • Difficulty Level : Hard
  • Last Updated : 25 May, 2021

Given a number m, find all numbers which have m digits and are a divisor of their right rotation. Right-rotation of a number N is the result of rotating the digits of N one place to the right and wrapping the least significant digit around so that it becomes the most significant digit. For example, the right-rotation of 4356 is 6435.

Examples:

Input: 2
Output:
11
22
33
44
55
66
77
88
99

Input: 6
Output:
102564
111111
128205
142857
153846
179487
205128
222222
230769
333333
444444
555555
666666
777777
888888
999999

128205 satisfies the condition as 128205 * 4 = 512820.

Brute force approach
The simplest approach is to traverse all the numbers which are greater than or equal to 10m-1 and less than 10m and check if they satisfy the required condition. We can check it in constant time, so the time complexity for the whole process is O(10m), which is feasible for only small values of m.
Below is the implementation of the above approach:  

C++




// C++ program to Generating numbers that
// are divisor of their right-rotations
 
#include <bits/stdc++.h>
using namespace std;
 
   
// Function to check if N is a
// divisor of its right-rotation
 
bool rightRotationDivisor(int N)
{
    int lastDigit = N % 10;
    int rightRotation = (lastDigit * pow(10 ,int(log10(N))))
                    + floor(N / 10);
    return (rightRotation % N == 0);
}
   
// Function to generate m-digit
// numbers which are divisor of
// their right-rotation
void generateNumbers(int m)
{
    for (int i=pow(10,(m - 1));i<pow(10 , m);i++)
        if (rightRotationDivisor(i))
            cout<<i<<endl;
 }
  
// Driver code
int main()
{
int m = 3;
generateNumbers(m);
}

Java




// Java program to Generating numbers that 
// are divisor of their right-rotations  
 
public class GFG {
     
    // Function to check if N is a 
    // divisor of its right-rotation
    static boolean rightRotationDivisor(int N)
    {
        int lastDigit = N % 10;
        int rightRotation = (int)(lastDigit * Math.pow(10 ,(int)(Math.log10(N))) 
                        + Math.floor(N / 10)); 
        return (rightRotation % N == 0);
    }
         
    // Function to generate m-digit 
    // numbers which are divisor of 
    // their right-rotation 
    static void generateNumbers(int m)
    {
        for (int i= (int)Math.pow(10,(m - 1)); i < Math.pow(10 , m);i++) 
            if (rightRotationDivisor(i))
                System.out.println(i);
     }
 
     
    // Driver code
    public static void main(String args[])
    {
        int m = 3;
        generateNumbers(m);
     
    }
    // This Code is contributed by ANKITRAI1
}
  

Python3




# Python program to Generating numbers that are
# divisor of their right-rotations
 
from math import log10
 
# Function to check if N is a
# divisor of its right-rotation
def rightRotationDivisor(N):
    lastDigit = N % 10
    rightRotation = (lastDigit * 10 ** int(log10(N))
                    + N // 10)
    return rightRotation % N == 0
 
# Function to generate m-digit
# numbers which are divisor of
# their right-rotation
def generateNumbers(m):
    for i in range(10 ** (m - 1), 10 ** m):
        if rightRotationDivisor(i):
            print(i)
 
# Driver code
m = 3
generateNumbers(m)

C#




// C# program to Generating numbers that
// are divisor of their right-rotations 
 
using System;
public class GFG{
 
    // Function to check if N is a
    // divisor of its right-rotation
    static bool rightRotationDivisor(int N)
    {
        int lastDigit = N % 10;
        int rightRotation = (int)(lastDigit * Math.Pow(10 ,(int)(Math.Log10(N)))
                        + Math.Floor((double)N/10));
        return (rightRotation % N == 0);
    }
         
    // Function to generate m-digit
    // numbers which are divisor of
    // their right-rotation
    static void generateNumbers(int m)
    {
        for (int i= (int)Math.Pow(10,(m - 1)); i < Math.Pow(10 , m);i++)
            if (rightRotationDivisor(i))
                Console.WriteLine(i);
    }
 
     
    // Driver code
    public static void Main()
    {
        int m = 3;
        generateNumbers(m);
     
    }
}
 
// This code is contributed by 29AjayKumar

PHP




<?php
// PHP program to Generating numbers that
// are divisor of their right-rotations
 
// Function to check if N is a
// divisor of its right-rotation
function rightRotationDivisor($N)
{
    $lastDigit = $N % 10;
    $rightRotation = ($lastDigit * pow(10 ,
                     (int)(log10($N)))) +
                           floor($N / 10);
    return ($rightRotation % $N == 0);
}
     
// Function to generate m-digit
// numbers which are divisor of
// their right-rotation
function generateNumbers($m)
{
    for ($i = pow(10, ($m - 1));
         $i < pow(10 , $m); $i++)
        if (rightRotationDivisor($i))
            echo $i . "\n";
}
 
// Driver code
$m = 3;
generateNumbers($m);
 
// This code is contributed
// by ChitraNayal
?>

Javascript




<script>
// Javascript program to Generating numbers that
// are divisor of their right-rotations 
     
    // Function to check if N is a
    // divisor of its right-rotation
    function rightRotationDivisor(N)
    {
        let lastDigit = N % 10;
        let rightRotation = (lastDigit * Math.pow(10 ,
                    Math.floor((Math.log10(N)))) + Math.floor(N / 10));
        return (rightRotation % N == 0);
    }
     
    // Function to generate m-digit
    // numbers which are divisor of
    // their right-rotation
    function generateNumbers(m)
    {
        for (let i= Math.floor(Math.pow(10,(m - 1))); i <
             Math.floor(Math.pow(10 , m));i++)
            if (rightRotationDivisor(i))
                document.write(i+"<br>");
    }
     
    // Driver code
    let m = 3;
    generateNumbers(m);
     
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
111
222
333
444
555
666
777
888
999

 

Time complexity: O(10m)



Efficient approach
Let dmdm-1..d3d2d1 be the general form of the numbers that we want to generate. Take x = dmdm-1..d3d2 and y = d1. The condition that we want to satisfy is y * 10m – 1 + x = k * (10x + y) where k is a positive integer. Rearranging the terms, we get x = (y * (10m-1 – k)) / (10k – 1). Thus, if we fix the value of y and k, we can get a value of x such that 10x + y is a number we need to generate.
The value of y can range from 1 to 9; observe that we will not have the case y = 0 as that would make the right rotation y * 10m – 1 + x have m – 1 digit, and the required condition will never be met.
We require x to have exactly m – 1 digit, i.e. 

10^{m - 2} \leq x < 10^{m - 1} \\ \Rightarrow 10^{m - 2} \leq y\frac{10^{m - 1} - k}{10k - 1} < 10^{m - 1} \\ \Rightarrow 10^{m - 1}k - 10^{m - 2} \leq y(10^{m - 1} - k) < 10^{m}k - 10^{m - 1} \\ \Rightarrow \frac{10^{m - 1}(y + 1)}{10^m + y} < k \leq \frac{10^{m - 2}(10y + 1)}{10^{m - 1} + y}
We can observe that the lower bound is always less than unity, so we can keep it at 1 since k has to be a positive integer.
We can use these results to obtain a highly efficient solution that runs with constant time complexity, i.e. O(1). An important point to note is that the numbers obtained may not be in a sorted form, so we need to store and explicitly sort them if we wish to obtain the numbers in a sorted fashion.
Below is the implementation of the above approach: 

C++




// C++ program to Generating
// numbers that are divisor
// of their right-rotations
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate m-digit
// numbers which are divisor of
// their right-rotation
void generateNumbers(int m)
{
  vector<int> numbers;
  int k_max, x;
 
  for (int y = 0; y < 10; y++)
  {
    k_max = (int)(pow(10, m - 2) *
                     (10 * y + 1)) /
            (int)(pow(10, m - 1) + y);
 
    for (int k = 1; k <= k_max; k++)
    {
      x = (int)(y * (pow(10, m - 1) - k)) /
                        (10 * k - 1);
 
      if ((int)(y * (pow(10, m - 1) - k)) %
                        (10 * k - 1) == 0)
        numbers.push_back(10 * x + y);
    }
  }
 
  sort(numbers.begin(), numbers.end());
  for (int i = 0; i < numbers.size(); i++)
    cout << (numbers[i]) << endl;
}
 
// Driver code
int main()
{
  int m = 3;
  generateNumbers(m);
}
 
// This code is contributed by Chitranayal

Java




// Java program to Generating numbers that
// are divisor of their right-rotations
import java.util.*;
import java.io.*;
 
class GFG
{
 
    // Function to generate m-digit
    // numbers which are divisor of
    // their right-rotation
    static void generateNumbers(int m)
    {
            ArrayList<Integer> numbers = new ArrayList<>();
            int k_max, x;
 
            for (int y = 0; y < 10; y++)
            {
 
                k_max = (int)(Math.pow(10,m-2) * (10 * y + 1)) /
                                (int)(Math.pow(10, m-1) + y);
 
                for (int k = 1; k <= k_max; k++)
                {
                        x = (int)(y*(Math.pow(10,m-1)-k)) / (10 * k -1);
 
                        if ((int)(y*(Math.pow(10,m-1)-k)) % (10 * k -1) == 0)
                            numbers.add(10 * x + y);
                }
 
            }
 
            Collections.sort(numbers);
            for (int i = 0; i < numbers.size(); i++)
                System.out.println(numbers.get(i));
    }
 
    // Driver code
    public static void main(String args[])
    {
            int m = 3;
            generateNumbers(m);
    }
}
 
// This code is contributed by rachana soma

Python 3




# Python program to Generating numbers that
# are divisor of their right-rotations
from math import log10
 
# Function to generate m-digit
# numbers which are divisor of
# their right-rotation
def generateNumbers(m):
    numbers = []
     
    for y in range(1, 10):
        k_max = ((10 ** (m - 2) *
                (10 * y + 1)) //
                (10 ** (m - 1) + y))
         
        for k in range(1, k_max + 1):
            x = ((y * (10 ** (m - 1) - k))
                // (10 * k - 1))
             
            if ((y * (10 ** (m - 1) - k))
                % (10 * k - 1) == 0):
                numbers.append(10 * x + y)
     
    for n in sorted(numbers):
        print(n)
 
# Driver code
m = 3
generateNumbers(m)

C#




// C# program to Generating numbers that
// are divisor of their right-rotations
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to generate m-digit
// numbers which are divisor of
// their right-rotation
static void generateNumbers(int m)
{
    List<int> numbers = new List<int>();
    int k_max, x;
 
    for (int y = 0; y < 10; y++)
    {
 
        k_max = (int)(Math.Pow(10, m - 2) * (10 * y + 1)) /
                (int)(Math.Pow(10, m - 1) + y);
 
        for (int k = 1; k <= k_max; k++)
        {
            x = (int)(y * (Math.Pow(10, m - 1) - k)) /
                                   (10 * k - 1);
 
            if ((int)(y * (Math.Pow(10, m - 1) - k)) %
                                   (10 * k - 1) == 0)
                numbers.Add(10 * x + y);
        }
    }
 
    numbers.Sort();
    for (int i = 0; i < numbers.Count; i++)
        Console.WriteLine(numbers[i]);
}
 
// Driver code
public static void Main(String []args)
{
    int m = 3;
    generateNumbers(m);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// Javascript program to Generating numbers that
// are divisor of their right-rotations
     
    // Function to generate m-digit
    // numbers which are divisor of
    // their right-rotation
    function generateNumbers(m)
    {
        let numbers = [];
        let k_max, x;
  
        for (let y = 0; y < 10; y++)
        {
  
            k_max = Math.floor((Math.pow(10,m-2) * (10 * y + 1)) /
                            Math.floor(Math.pow(10, m-1) + y));
  
            for (let k = 1; k <= k_max; k++)
            {
                    x = Math.floor((y*(Math.pow(10,m-1)-k)) / (10 * k -1));
  
                    if (Math.floor((y*(Math.pow(10,m-1)-k)) % (10 * k -1)) == 0)
                        numbers.push(10 * x + y);
            }
  
        }
  
        numbers.sort(function(a,b){return a-b;});
        for (let i = 0; i < numbers.length; i++)
            document.write(numbers[i]+"<br>");
    }
     
    // Driver code
    let m = 3;
    generateNumbers(m);
 
// This code is contributed by rag2127
</script>
Output: 
111
222
333
444
555
666
777
888
999

 

Time complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :