GeeksforGeeks App
Open App
Browser
Continue

# Generate longest possible array with product K such that each array element is divisible by its previous adjacent element

Given an integer K, the task is to construct an array of maximum length with product of all array elements equal to K, such that each array element except the first one is divisible by its previous adjacent element.
Note: Every array element in the generated array must be greater than 1.

Examples:

Input: K = 4
Output: {2, 2}
Explanation:
The second element, i.e. arr[1] (= 2) is divisible by the first element, i.e. arr[0] (= 2).
Product of the array elements = 2 * 2 = 4(= K).
Therefore, the array satisfies the required condition.

Input: K = 23
Output: {23}

Approach: The idea to solve this problem is to find all the prime factors of K with their respective powers such that:

prime_factor[1]x * prime_factor[2]y … * primefactor[i]z = K

Follow the steps below to solve this problem:

• Find the prime factor, say X, with the greatest power, say Y.
• Then, Y will be the length of the required array.
• Therefore, construct an array of length Y with all elements in it equal to X.
• To make the product of array equal to K, multiply the last element by K / X y.

Below is the implementation of the above approach:

## C++

 // C++ program for the above approach #include using namespace std; // Function to construct longest array// with product K such that each element// is divisible by its previous elementvoid findLongestArray(int K){    // Stores the prime factors of K    vector > primefactors;     int K_temp = K;     for (int i = 2; i * i <= K; i++) {         // Stores the power to which        // primefactor i is raised        int count = 0;         while (K_temp % i == 0) {            K_temp /= i;            count++;        }         if (count > 0)            primefactors.push_back({ count, i });    }     if (K_temp != 1)        primefactors.push_back(            { 1, K_temp });     // Sort prime factors in descending order    sort(primefactors.rbegin(),         primefactors.rend());     // Stores the final array    vector answer(        primefactors[0].first,        primefactors[0].second);     // Multiply the last element by K    answer.back() *= K;     for (int i = 0;         i < primefactors[0].first; i++) {        answer.back() /= primefactors[0].second;    }     // Print the constructed array    cout << "{";    for (int i = 0; i < (int)answer.size(); i++) {        if (i == answer.size() - 1)            cout << answer[i] << "}";        else            cout << answer[i] << ", ";    }} // Driver Codeint main(){    int K = 4;    findLongestArray(K);}

## Java

 // java program for the above approachimport java.io.*;import java.lang.*;import java.util.*; class GFG {     // Function to construct longest array    // with product K such that each element    // is divisible by its previous element    static void findLongestArray(int K)    {        // Stores the prime factors of K        ArrayList primefactors = new ArrayList<>();         int K_temp = K;         for (int i = 2; i * i <= K; i++) {             // Stores the power to which            // primefactor i is raised            int count = 0;             while (K_temp % i == 0) {                K_temp /= i;                count++;            }             if (count > 0)                primefactors.add(new int[] { count, i });        }         if (K_temp != 1)            primefactors.add(new int[] { 1, K_temp });         // Sort prime factors in descending order        Collections.sort(primefactors, (x, y) -> {            if (x[0] != y[0])                return y[0] - x[0];            return y[1] - x[1];        });         // Stores the final array        int n = primefactors.get(0)[0];        int val = primefactors.get(0)[1];        int answer[] = new int[n];        Arrays.fill(answer, val);         // Multiply the last element by K        answer[n - 1] *= K;         for (int i = 0; i < n; i++) {            answer[n - 1] /= val;        }         // Print the constructed array        System.out.print("{");        for (int i = 0; i < answer.length; i++) {            if (i == answer.length - 1)                System.out.print(answer[i] + "}");            else                System.out.print(answer[i] + ", ");        }    }     // Driver Code    public static void main(String[] args)    {         int K = 4;        findLongestArray(K);    }} // This code is contributed by Kingash.

## Python3

 # Python 3 program for the above approach # Function to construct longest array# with product K such that each element# is divisible by its previous elementdef findLongestArray(K):     # Stores the prime factors of K    primefactors = []     K_temp = K     i = 2    while i * i <= K:         # Stores the power to which        # primefactor i is raised        count = 0         while (K_temp % i == 0):            K_temp //= i            count += 1         if (count > 0):            primefactors.append([count, i])         i += 1     if (K_temp != 1):        primefactors.append(            [1, K_temp])     # Sort prime factors in descending order    primefactors.sort()     # Stores the final array    answer = [primefactors[0][0],              primefactors[0][1]]     # Multiply the last element by K    answer[-1] *= K     for i in range(primefactors[0][0]):        answer[-1] //= primefactors[0][1]     # Print the constructed array    print("{", end = "")    for i in range(len(answer)):        if (i == len(answer) - 1):            print(answer[i], end = "}")        else:            print(answer[i], end = ", ") # Driver Codeif __name__ == "__main__":    K = 4    findLongestArray(K)     # This code is contributed by ukasp.

## Javascript



Output:

{2, 2}

Time Complexity: O(√(K) * log(√(K)))
Auxiliary Space: O(√(K))

My Personal Notes arrow_drop_up