# Generate Complete Binary Tree in such a way that sum of non-leaf nodes is minimum

Given an array arr[] of size N, the task is to generate a Complete Binary Tree in such a way that sum of the non-leaf nodes is minimum, whereas values of the leaf node corresponds to the array elements in an In-order Traversal of the tree and value of each non-leaf node corresponds to the product of the largest leaf value in the left sub-tree and right sub-tree

Examples:

Input: arr[] = {1, 2, 3, 4}
Output: 20
Explanation:

Input: arr[] = {5, 2, 3}
Output: 21

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:
To remove a number arr[i], it needs a cost a * b, where b >= a and also an element of the array. To minimize the cost of removal, the idea is to minimize b. To compute the non-leaf node there are two candidates, that is the first largest number on the left and the first largest number on the right. The cost to remove arr[i] is a * min(left, right). It can be further decomposed as to find the next greater element in the array, on the left and one right.

Refer: Next greater element

Below is the implementation of the above approach:

 `// C++ implementation to find the ` `// minimum cost tree ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to find minimum cost tree ` `int` `MinCostTree(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `ans = 0; ` ` `  `    ``// Stack ` `    ``vector<``int``> st = { INT_MAX }; ` ` `  `    ``// Loop to traverse the array elements ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `         `  `        ``// Keep array elements  ` `        ``// in decreasing order by poping out ` `        ``// the elements from stack till the top ` `        ``// element is less than current element ` `        ``while` `(st.back() <= arr[i]) { ` `             `  `            ``// Get top element ` `            ``int` `x = st.back(); ` ` `  `            ``// Remove it ` `            ``st.pop_back(); ` ` `  `            ``// Get the minimum cost to remove x ` `            ``ans += x * min(st.back(), arr[i]); ` `        ``} ` ` `  `        ``// Push current element ` `        ``st.push_back(arr[i]); ` `    ``} ` ` `  `    ``// Find cost for all remaining elements ` `    ``for` `(``int` `i = 2; i < st.size(); i++) ` `        ``ans += st[i] * st[i - 1]; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 5, 2, 3 }; ` ` `  `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``// Function call ` `    ``cout << MinCostTree(arr, n); ` ` `  `    ``return` `0; ` `} `

 `// Java implementation to find the ` `// minimum cost tree ` `import` `java.util.*; ` ` `  `class` `GFG{ ` ` `  `// Function to find minimum cost tree ` `static` `int` `MinCostTree(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `ans = ``0``; ` ` `  `    ``// Stack ` `    ``Vector st = ``new` `Vector(); ` `    ``st.add(Integer.MAX_VALUE); ` ` `  `    ``// Loop to traverse the array elements ` `    ``for` `(``int` `i = ``0``; i < n; i++) { ` `         `  `        ``// Keep array elements  ` `        ``// in decreasing order by poping out ` `        ``// the elements from stack till the top ` `        ``// element is less than current element ` `        ``while` `(st.get(st.size()-``1``) <= arr[i]) { ` `             `  `            ``// Get top element ` `            ``int` `x = st.get(st.size()-``1``); ` ` `  `            ``// Remove it ` `            ``st.remove(st.size()-``1``); ` ` `  `            ``// Get the minimum cost to remove x ` `            ``ans += x * Math.min(st.get(st.size()-``1``), arr[i]); ` `        ``} ` ` `  `        ``// Push current element ` `        ``st.add(arr[i]); ` `    ``} ` ` `  `    ``// Find cost for all remaining elements ` `    ``for` `(``int` `i = ``2``; i < st.size(); i++) ` `        ``ans += st.get(i) * st.get(i-``1``); ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``5``, ``2``, ``3` `}; ` ` `  `    ``int` `n = arr.length; ` ` `  `    ``// Function call ` `    ``System.out.print(MinCostTree(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by sapnasingh4991 `

 `# Python3 implementation to find the ` `# minimum cost tree ` ` `  `# Function to find minimum cost tree ` `def` `MinCostTree(arr, n): ` `     `  `    ``ans ``=` `0` `    ``st ``=` `[``2``*``*``32``] ` `     `  `    ``# Loop to traverse the array elements ` `    ``for` `i ``in` `range``(n): ` `         `  `        ``# Keep array elements  ` `        ``# in decreasing order by poping out ` `        ``# the elements from stack till the top ` `        ``# element is less than current element ` `        ``while` `(st[``-``1``] <``=` `arr[i]): ` `             `  `            ``# Get top element ` `            ``x ``=` `st[``-``1``] ` `             `  `            ``# Remove it ` `            ``st.pop() ` `             `  `            ``# Get the minimum cost to remove x ` `            ``ans ``+``=` `x ``*` `min``(st[``-``1``], arr[i]) ` `             `  `        ``# Push current element ` `        ``st.append(arr[i]) ` `         `  `    ``# Find cost for all remaining elements ` `    ``for` `i ``in` `range``(``2``,``len``(st)): ` `        ``ans ``+``=` `st[i] ``*` `st[i ``-` `1``] ` `         `  `    ``return` `ans ` `     `  `# Driver Code ` `arr ``=` `[``5``, ``2``, ``3``] ` ` `  `n ``=` `len``(arr) ` ` `  `# Function call ` `print``(MinCostTree(arr, n)) ` ` `  `# This code is contributed by shubhamsingh10 `

 `// C# implementation to find the ` `// minimum cost tree ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to find minimum cost tree ` `static` `int` `MinCostTree(``int` `[]arr, ``int` `n) ` `{ ` `    ``int` `ans = 0; ` ` `  `    ``// Stack ` `    ``List<``int``> st = ``new` `List<``int``>(); ` `    ``st.Add(``int``.MaxValue); ` ` `  `    ``// Loop to traverse the array elements ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `         `  `        ``// Keep array elements  ` `        ``// in decreasing order by poping out ` `        ``// the elements from stack till the top ` `        ``// element is less than current element ` `        ``while` `(st[st.Count-1] <= arr[i]) { ` `             `  `            ``// Get top element ` `            ``int` `x = st[st.Count-1]; ` ` `  `            ``// Remove it ` `            ``st.RemoveAt(st.Count-1); ` ` `  `            ``// Get the minimum cost to remove x ` `            ``ans += x * Math.Min(st[st.Count-1], arr[i]); ` `        ``} ` ` `  `        ``// Push current element ` `        ``st.Add(arr[i]); ` `    ``} ` ` `  `    ``// Find cost for all remaining elements ` `    ``for` `(``int` `i = 2; i < st.Count; i++) ` `        ``ans += st[i] * st[i-1]; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]arr = { 5, 2, 3 }; ` ` `  `    ``int` `n = arr.Length; ` ` `  `    ``// Function call ` `    ``Console.Write(MinCostTree(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:
```21
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :