Skip to content
Related Articles

Related Articles

Improve Article

Generate array with minimum sum which can be deleted in P steps

  • Difficulty Level : Medium
  • Last Updated : 25 Aug, 2021
Geek Week

Given two numbers N and P. The task is to generate an array of all positive elements, and in one operation you can choose a minimum number in the array and subtract it from all array elements. If the array element becomes 0 then you will remove it. 
You have to print the minimum possible sum of the array and one possible array such that after applying exactly P steps the array will vanish.

Examples:  

Input : N = 4, P = 2 
Output : 
The Minimum Possible Sum is: 5 
The Array Elements are: 1 2 1 1 
Explanation: 
The array can be [1, 2, 1, 1] after 1st step it becomes [0, 1, 0, 0] and it becomes [1] and after step 2 it will be vanished.Thus the sum is 5 and it is minimum possible value.
Input : N = 3 , P = 1 
Output
The Minimum Possible Sum is: 3 
The Array Elements are: 1 1 1  

Approach: The problem can be solved by following a greedy approach. First, we will place first P natural numbers, and for the rest (N – P) positions we will fill it with 1 because we have to minimize the sum.
So the sum will be P*(P+1)/2 + (N – P).

Below is the implementation of the above approach:  



C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required array
void findArray(int N, int P)
{
    // calculating minimum possible sum
    int ans = (P * (P + 1)) / 2 + (N - P);
 
    // Array
    int arr[N + 1];
 
    // place first P natural elements
    for (int i = 1; i <= P; i++)
        arr[i] = i;
 
    // Fill rest of the elements with 1
    for (int i = P + 1; i <= N; i++)
        arr[i] = 1;
 
    cout << "The Minimum Possible Sum is: " << ans << "\n";
    cout << "The Array Elements are: \n";
 
    for (int i = 1; i <= N; i++)
        cout << arr[i] << ' ';
}
 
// Driver Code
int main()
{
    int N = 5, P = 3;
 
    findArray(N, P);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to find the required array
    static void findArray(int N, int P)
    {
        // calculating minimum possible sum
        int ans = (P * (P + 1)) / 2 + (N - P);
 
        // Array
        int arr[] = new int[N + 1];
 
        // place first P natural elements
        for (int i = 1; i <= P; i++)
        {
            arr[i] = i;
        }
 
        // Fill rest of the elements with 1
        for (int i = P + 1; i <= N; i++)
        {
            arr[i] = 1;
        }
 
        System.out.print("The Minimum Possible Sum is: " +
                                                ans + "\n");
        System.out.print("The Array Elements are: \n");
 
        for (int i = 1; i <= N; i++)
        {
            System.out.print(arr[i] + " ");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 5, P = 3;
 
        findArray(N, P);
    }
}
 
// This code contributed by Rajput-Ji

Python3




# Python3 implementation of above approach
 
# Function to find the required array
def findArray(N, P):
     
    # calculating minimum possible sum
    ans = (P * (P + 1)) // 2 + (N - P);
 
    # Array
    arr = [0] * (N + 1);
 
    # place first P natural elements
    for i in range(1, P + 1):
        arr[i] = i;
 
    # Fill rest of the elements with 1
    for i in range(P + 1, N + 1):
        arr[i] = 1;
 
    print("The Minimum Possible Sum is: ", ans);
    print("The Array Elements are: ");
 
    for i in range(1, N + 1):
        print(arr[i], end = " ");
 
# Driver Code
N = 5;
P = 3;
findArray(N, P);
 
# This code is contributed by mits

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to find the required array
    static void findArray(int N, int P)
    {
        // calculating minimum possible sum
        int ans = (P * (P + 1)) / 2 + (N - P);
 
        // Array
        int []arr = new int[N + 1];
 
        // place first P natural elements
        for (int i = 1; i <= P; i++)
        {
            arr[i] = i;
        }
 
        // Fill rest of the elements with 1
        for (int i = P + 1; i <= N; i++)
        {
            arr[i] = 1;
        }
 
        Console.Write("The Minimum Possible Sum is: " +
                                                ans + "\n");
        Console.Write("The Array Elements are: \n");
 
        for (int i = 1; i <= N; i++)
        {
            Console.Write(arr[i] + " ");
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int N = 5, P = 3;
 
        findArray(N, P);
    }
}
 
/* This code contributed by PrinciRaj1992 */

PHP




<?php
// PHP implementation of above approach
 
// Function to find the required array
function findArray($N, $P)
{
    // calculating minimum possible sum
    $ans = ($P * ($P + 1)) / 2 + ($N - $P);
 
    // Array
    $arr[$N + 1] = array();
 
    // place first P natural elements
    for ($i = 1; $i <= $P; $i++)
        $arr[$i] = $i;
 
    // Fill rest of the elements with 1
    for ($i = $P + 1; $i <= $N; $i++)
        $arr[$i] = 1;
 
    echo "The Minimum Possible Sum is: ",
                              $ans, "\n";
    echo "The Array Elements are: \n";
 
    for ($i = 1; $i <= $N; $i++)
    echo $arr[$i], ' ';
}
 
// Driver Code
$N = 5;
$P = 3;
findArray($N, $P);
 
// This code is contributed by ajit.
?>

Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to find the required array
    function findArray(N, P)
    {
        // calculating minimum possible sum
        let ans = parseInt((P * (P + 1)) / 2, 10) + (N - P);
   
        // Array
        let arr = new Array(N + 1);
   
        // place first P natural elements
        for (let i = 1; i <= P; i++)
        {
            arr[i] = i;
        }
   
        // Fill rest of the elements with 1
        for (let i = P + 1; i <= N; i++)
        {
            arr[i] = 1;
        }
   
        document.write("The Minimum Possible Sum is: " +
                                                ans + "</br>");
        document.write("The Array Elements are: " + "</br>");
   
        for (let i = 1; i <= N; i++)
        {
            document.write(arr[i] + " ");
        }
    }
     
    let N = 5, P = 3;
   
      findArray(N, P);
         
</script>
Output: 
The Minimum Possible Sum is: 8
The Array Elements are: 
1 2 3 1 1

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :