# Generate Array whose sum of all K-size subarrays divided by N leaves remainder X

Given three integer N, K and X, the task is to create an array of length N such that sum of all its K-length subarrays modulo N is X.
Examples:

Input: N = 6, K = 3, X = 3
Output: 9 6 6 9 6 6
Explanation:
All subarrays of length 3 and their respective sum%N values are as follows:
[9, 6, 6] Sum = 21 % 6 = 3
[6, 6, 9] sum = 21 % 6 = 3
[6, 9, 6] sum = 21 % 6 = 3
[9, 6, 6] sum = 21 % 6 = 3
Since all its subarrays have sum % N = X (=3), the generated array is valid.
Input: N = 4, K = 2, X = 2
Output: 6 4 6 4

Approach:
We can observe that in order to make the sum of any subarray of size K modulo N to be equal to X, the subarray needs to have a K – 1 elements equal to N and 1 element equal to N + X.
Illustration:

If N = 6, K = 3, X = 3
Here a K length subarray needs to be a permutation of {9, 6, 6} where 2 (K – 1) elements are divisible by 6 and 1 element has modulo N equal to X( 9%6 = 3)
Sum of subarray % N = (21 % 6) = 3 (same as X)
Hence, each K length

Hence, follow the steps below to solve the problem:

• Iterate i from 0 to N – 1, to print the ith element of the required subarray.

• If i % K is equal to 0, print N + X. Otherwise, for all other values of i, print N

• This ensures that every possible K-length subarray has a sum K*N + X. Hence sum modulo N is X for all such subarrays.

Below is the implementation of the above approach.

## C++

 `// C++ implementation of the` `// above approach` `#include ` `using` `namespace` `std;`   `// Function prints the required array` `void` `createArray(``int` `n, ``int` `k, ``int` `x)` `{` `    ``for` `(``int` `i = 0; i < n; i++) {` `        ``// First element of each K` `        ``// length subarrays` `        ``if` `(i % k == 0) {` `            ``cout << x + n << ``" "``;` `        ``}` `        ``else` `{` `            ``cout << n << ``" "``;` `        ``}` `    ``}` `}`   `// Driver Program` `int` `main()` `{`   `    ``int` `N = 6, K = 3, X = 3;` `    ``createArray(N, K, X);` `}`

## Java

 `// Java implementation of the above approach` `import` `java.util.*;` `class` `GFG{`   `// Function prints the required array` `static` `void` `createArray(``int` `n, ``int` `k, ``int` `x)` `{` `    ``for``(``int` `i = ``0``; i < n; i++)` `    ``{` `        `  `       ``// First element of each K` `       ``// length subarrays` `       ``if` `(i % k == ``0``) ` `       ``{` `           ``System.out.print((x + n) + ``" "``);` `       ``}` `       ``else` `       ``{` `           ``System.out.print(n + ``" "``);` `       ``}` `    ``}` `}`   `// Driver Code` `public` `static` `void` `main(String args[])` `{` `    ``int` `N = ``6``, K = ``3``, X = ``3``;` `    `  `    ``createArray(N, K, X);` `}` `}`   `// This code is contributed by Code_Mech`

## Python3

 `# Python3 implementation of the ` `# above approach `   `# Function prints the required array ` `def` `createArray(n, k, x):` `    `  `    ``for` `i ``in` `range``(n):` `        `  `        ``# First element of each K` `        ``# length subarrays` `        ``if` `(i ``%` `k ``=``=` `0``):` `            ``print``(x ``+` `n, end ``=` `" "``)` `        ``else` `:` `            ``print``(n, end ``=` `" "``)`   `# Driver code` `N ``=` `6` `K ``=` `3` `X ``=` `3`   `createArray(N, K, X)`   `# This code is contributed by Vishal Maurya.`

## C#

 `// C# implementation of the above approach` `using` `System;` `class` `GFG{`   `// Function prints the required array` `static` `void` `createArray(``int` `n, ``int` `k, ``int` `x)` `{` `    ``for``(``int` `i = 0; i < n; i++)` `    ``{` `       `  `       ``// First element of each K` `       ``// length subarrays` `       ``if` `(i % k == 0) ` `       ``{` `           ``Console.Write((x + n) + ``" "``);` `       ``}` `       ``else` `       ``{` `           ``Console.Write(n + ``" "``);` `       ``}` `    ``}` `}`   `// Driver Code` `public` `static` `void` `Main()` `{` `    ``int` `N = 6, K = 3, X = 3;` `    `  `    ``createArray(N, K, X);` `}` `}`   `// This code is contributed by Code_Mech`

## Javascript

 ``

Output:

`9 6 6 9 6 6`

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next