Skip to content
Related Articles

Related Articles

Generate an N-length string having longest palindromic substring of length K
  • Last Updated : 22 Dec, 2020

Given two intgers N and K (K ≤ N), the task is to obtain a string of length N such that maximum length of a palindromic substring of this string is K.

Examples:

Input: N = 5, K = 3 
Output: “abacd” 
Explanation: Palindromic substrings are “a”, “b”, “c”, “d” and “aba”. Therefore, the longest palindromic substring from the given string is of length 3.

Input: N = 8, K = 4 
Output: “abbacdef” 
Explanation: Palindromic subtsrings are “a”, “b”, “c”, “d”, “e”, “f”, “bb”, “abba”. Therefore, the longest palindromic substring from the given string is of length 4.

Approach: The idea is based on the following observation that the string of any length made up of a single character is always palindromic, e.g. {‘a’, ‘bbbbb’, ‘ccc’}. So, in order to generate a string with required conditions, print ‘a’ K times such that it has a longest palindromic substring of length K fill the remaining N – K slots by a non-palindromic sequence.



Follow the steps below to solve the problem:

  • Print ‘a’ exactly K times.
  • Consider a non-palindromic sequence, say “bcd”.
  • Print the string.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate a string of
// length N having longest palindromic
// substring of length K
void string_palindrome(int N, int K)
{
 
    // Fill first K characters with 'a'
    for (int i = 0; i < K; i++)
        cout << "a";
 
    // Stores a non-palindromic sequence
    // to be repeated for N - k slots
    string s = "bcd";
 
    // Print N - k remaining characters
    for (int i = 0; i < N - K; i++)
        cout << s[i % 3];
}
 
// Driver Code
int main()
{
 
    // Given N and K
    int N = 5, K = 3;
    string_palindrome(N, K);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement the above approach
import java.util.*;
 
class GFG
{
 
// Function to generate a String of
// length N having longest palindromic
// subString of length K
static void String_palindrome(int N, int K)
{
 
    // Fill first K characters with 'a'
    for (int i = 0; i < K; i++)
        System.out.print("a");
 
    // Stores a non-palindromic sequence
    // to be repeated for N - k slots
    String s = "bcd";
 
    // Print N - k remaining characters
    for (int i = 0; i < N - K; i++)
        System.out.print(s.charAt(i % 3));
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given N and K
    int N = 5, K = 3;
    String_palindrome(N, K);
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement the above approach
 
# Function to generate a string of
# length N having longest palindromic
# substring of length K
def string_palindrome(N, K):
 
    # Fill first K characters with 'a'
    for i in range(K):
        print("a", end = "")
 
    # Stores a non-palindromic sequence
    # to be repeated for N - k slots
    s = "bcd"
 
    # PrN - k remaining characters
    for i in range(N - K):
        print(s[i % 3], end = "")
 
# Driver Code
if __name__ == '__main__':
   
    # Given N and K
    N, K = 5, 3
    string_palindrome(N, K)
 
    # This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement the above approach
using System;
class GFG
{
     
    // Function to generate a String of
    // length N having longest palindromic
    // subString of length K
    static void String_palindrome(int N, int K)
    {
     
        // Fill first K characters with 'a'
        for (int i = 0; i < K; i++)
            Console.Write("a");
     
        // Stores a non-palindromic sequence
        // to be repeated for N - k slots
        string s = "bcd";
     
        // Print N - k remaining characters
        for (int i = 0; i < N - K; i++)
            Console.Write(s[i % 3]);
    }
     
    // Driver Code
    public static void Main(string[] args)
    {
     
        // Given N and K
        int N = 5, K = 3;
        String_palindrome(N, K);
    }
}
 
// This code is contributed by AnkThon

chevron_right


Output: 

aaabc

 

Time complexity: O(N)
Auxiliary space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :