# Generate an N-length array having GCD of all its pairs present in a given 2D array

Given a 2D array **arr[][]** consisting of **N*N** positive integers, the task is to generate an N-length array such that Greatest Common Divisors(GCD) of all possible pairs of that array is present in the array **arr[][]**.

**Examples:**

Input:N = 4, arr[] = {2, 1, 2, 3, 4, 3, 2, 6, 1, 1, 2, 2, 1, 2, 3, 2}Output:4, 3, 6, 2Explanation:

Considering the array A[] as {4, 3, 6, 2}, then the GCD of all possible pairs of this array is given below which is the given array arr[].

{{4, 1, 2, 2},

{1, 3, 3, 1},

{2, 3, 6, 2},

{2, 1, 2, 2}}

Input:N = 1, mat = {100}Output:100

**Approach:** The above problem can be solved by using the fact that, GCD of the largest element in the original array with itself is the largest in the arr[] and after removing the gcd pairs with that element, the next element can be found. Follow the steps below to solve the given problem:

- Initialize a map say,
**M**store the frequency of negation of array element in the map**M**. - Initialize a variable, say
**pos**as**(N – 1)**. - Now, for all array elements
**arr[]**find the maximum element. - Traverse the map
**M.** - For each element of the original array, find the element with the
**maximum**frequency and store it in the ans. - Find
**ans[pos]**and remove all GCD from**pos+1**to**N-1**of the**ans**. - Update
**pos**as**pos-1**. - Repeat above steps to find all elements of the original array.
- Finally, print the
**ans**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `n;` ` ` `// Function to calculate GCD of two numbers` `int` `gcd(` `int` `a, ` `int` `b)` `{` ` ` `return` `b == 0 ? a : gcd(b, a % b);` `}` ` ` `// Function to generate an N-length` `// array having GCD of all pairs` `// present in the array mat[][]` `void` `restoreArray(vector<` `int` `> mat)` `{` ` ` `map<` `int` `, ` `int` `> cnt;` ` ` ` ` `// Stores the required array` ` ` `vector<` `int` `> ans(n);` ` ` ` ` `for` `(` `int` `i = 0; i < (n * n); ++i) {` ` ` ` ` `// Store frequencies in map` ` ` `// in decreasing order` ` ` `cnt[-mat[i]]++;` ` ` `}` ` ` ` ` `int` `pos = n - 1;` ` ` ` ` `for` `(` `auto` `it = cnt.begin();` ` ` `it != cnt.end(); ++it) {` ` ` ` ` `int` `x = -it->first;` ` ` `while` `(it->second) {` ` ` ` ` `// gcd(x, x)` ` ` `ans[pos] = x;` ` ` `--it->second;` ` ` ` ` `// Remove all GCDs for` ` ` `// indices pos + 1 -> n - 1` ` ` `for` `(` `int` `i = pos + 1; i < n; ++i)` ` ` ` ` `cnt[-gcd(ans[pos], ans[i])] -= 2;` ` ` ` ` `// Decreasing pos` ` ` `pos--;` ` ` `}` ` ` `}` ` ` ` ` `// Print restored array` ` ` `for` `(` `int` `i = 0; i < n; ++i)` ` ` `printf` `(` `"%d "` `, ans[i]);` `}` ` ` `// Driver Code` `int` `main()` `{` ` ` ` ` `// Given Input` ` ` `n = 4;` ` ` `vector<` `int` `> mat{ 2, 1, 2, 3, 4, 3,` ` ` `2, 6, 1, 1, 2,` ` ` `2, 1, 2, 3, 2 };` ` ` ` ` `// Function Call` ` ` `restoreArray(mat);` ` ` `return` `0;` `}` |

**Output:**

2 3 4 6

**Time Complexity:** O(N^{2}LogN)**Auxiliary Space: **O(N^{2})

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.