Generate an array of K elements such that sum of elements is N and the condition a[i] < a[i+1] <= 2*a[i] is met | Set 2
Given two integers N and K, the task is to generate an array arr[] of length K such that:
- arr[0] + arr[1] + … + arr[K – 1] = N.
- arr[i] > 0 for 0 ≤ i < K.
- arr[i] < arr[i + 1] ≤ 2 * arr[i] for 0 ≤ i < K – 1.
If there are multiple answers find any one of them, otherwise, print -1.
Examples:
Input: N = 26, K = 6
Output: 1 2 3 4 6 10
The above array satisfies all the conditions.Input: N = 8, k = 3
Output: -1
Approach: Initially we form the array with the lowest possible configuration which is filling up the array with 1, 2, 3, 4.. which satisfies the given conditions. If the summation of 1..K is greater than N, then the array cannot be formed. In order to form the array, fill up the array initially with 1, 2, 3, .. K. Again add (n-sum)/k to every element in the array, because in adding so, no conditions are void, because we are adding equal elements to every number.
The remaining number rem is greedily added from the back, to make every number twice of its previous number. After filling up the array, if any of the given conditions are not met, print -1, else the formed array will be our desired answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that print the // desired array which // satisfies the given conditions void solve( int n, int k) { int mini = 0; int x1 = 1; int a[k]; for ( int i = 1; i <= k; i++) { mini += x1; a[i - 1] = x1; x1 += 1; } // If the lowest filling condition // is void, then it is not possible to // generate the required array if (n < mini) { cout << "-1" ; return ; } int rem = n - mini; int cnt = rem / k; rem = rem % k; // Increase all the elements by cnt for ( int i = 0; i < k; i++) a[i] += cnt; // Start filling from the back // till the number is a[i+1] <= 2*a[i] for ( int i = k - 1; i > 0 && rem > 0; i--) { // Get the number to be filled int xx = a[i - 1] * 2; int left = xx - a[i]; // If it is less than the // remaining numbers to be filled if (rem >= left) { a[i] = xx; rem -= left; } // less than remaining numbers // to be filled else { a[i] += rem; rem = 0; } } // Get the sum of the array int sum = a[0]; for ( int i = 1; i < k; i++) { // If this condition is void at any stage // during filling up, then print -1 if (a[i] > 2 * a[i - 1]) { cout << "-1" ; return ; } // Else add it to the sum sum += a[i]; } // If the sum condition is not // satisfied, then print -1 if (sum != n) { cout << "-1" ; return ; } // Print the generated array for ( int i = 0; i < k; i++) cout << a[i] << " " ; } // Driver code int main() { int n = 26, k = 6; solve(n, k); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function that print the // desired array which // satisfies the given conditions static void solve( int n, int k) { int mini = 0 ; int x1 = 1 ; int [] a = new int [k]; for ( int i = 1 ; i <= k; i++) { mini += x1; a[i - 1 ] = x1; x1 += 1 ; } // If the lowest filling condition // is void, then it is not possible to // generate the required array if (n < mini) { System.out.print( "-1" ); return ; } int rem = n - mini; int cnt = rem / k; rem = rem % k; // Increase all the elements by cnt for ( int i = 0 ; i < k; i++) a[i] += cnt; // Start filling from the back // till the number is a[i+1] <= 2*a[i] for ( int i = k - 1 ; i > 0 && rem > 0 ; i--) { // Get the number to be filled int xx = a[i - 1 ] * 2 ; int left = xx - a[i]; // If it is less than the // remaining numbers to be filled if (rem >= left) { a[i] = xx; rem -= left; } // less than remaining numbers // to be filled else { a[i] += rem; rem = 0 ; } } // Get the sum of the array int sum = a[ 0 ]; for ( int i = 1 ; i < k; i++) { // If this condition is void at any stage // during filling up, then print -1 if (a[i] > 2 * a[i - 1 ]) { System.out.print( "-1" ); return ; } // Else add it to the sum sum += a[i]; } // If the sum condition is not // satisfied, then print -1 if (sum != n) { System.out.print( "-1" ); return ; } // Print the generated array for ( int i = 0 ; i < k; i++) System.out.print(a[i] + " " ); } // Driver code public static void main(String[] args) { int n = 26 , k = 6 ; solve(n, k); } } // This code contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approach # Function that print the # desired array which # satisfies the given conditions def solve(n, k): mini = 0 x1 = 1 a = [ 0 for i in range (k)] for i in range ( 1 , k + 1 ): mini + = x1 a[i - 1 ] = x1 x1 + = 1 # If the lowest filling condition # is void, then it is not possible to # generate the required array if (n < mini): print ( "-1" ,end = "") return rem = n - mini cnt = int (rem / k) rem = rem % k # Increase all the elements by cnt for i in range (k): a[i] + = cnt # Start filling from the back # till the number is a[i+1] <= 2*a[i] i = k - 1 while (i > 0 and rem > 0 ): # Get the number to be filled xx = a[i - 1 ] * 2 left = xx - a[i] # If it is less than the # remaining numbers to be filled if (rem > = left): a[i] = xx rem - = left # less than remaining numbers # to be filled else : a[i] + = rem rem = 0 i - = 1 # Get the sum of the array sum = a[ 0 ] for i in range ( 1 , k): # If this condition is void at any stage # during filling up, then print -1 if (a[i] > 2 * a[i - 1 ]): print ( "-1" , end = "") return # Else add it to the sum sum + = a[i] # If the sum condition is not # satisfied, then print -1 if ( sum ! = n): print ( "-1" , end = "") return # Print the generated array for i in range (k): print (a[i], end = " " ) # Driver code if __name__ = = '__main__' : n = 26 k = 6 solve(n, k) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { // Function that print the // desired array which // satisfies the given conditions static void solve( int n, int k) { int mini = 0; int x1 = 1; int [] a = new int [k]; for ( int i = 1; i <= k; i++) { mini += x1; a[i - 1] = x1; x1 += 1; } // If the lowest filling condition // is void, then it is not possible to // generate the required array if (n < mini) { Console.Write( "-1" ); return ; } int rem = n - mini; int cnt = rem / k; rem = rem % k; // Increase all the elements by cnt for ( int i = 0; i < k; i++) a[i] += cnt; // Start filling from the back // till the number is a[i+1] <= 2*a[i] for ( int i = k - 1; i > 0 && rem > 0; i--) { // Get the number to be filled int xx = a[i - 1] * 2; int left = xx - a[i]; // If it is less than the // remaining numbers to be filled if (rem >= left) { a[i] = xx; rem -= left; } // less than remaining numbers // to be filled else { a[i] += rem; rem = 0; } } // Get the sum of the array int sum = a[0]; for ( int i = 1; i < k; i++) { // If this condition is void at any stage // during filling up, then print -1 if (a[i] > 2 * a[i - 1]) { Console.Write( "-1" ); return ; } // Else add it to the sum sum += a[i]; } // If the sum condition is not // satisfied, then print -1 if (sum != n) { Console.Write( "-1" ); return ; } // Print the generated array for ( int i = 0; i < k; i++) Console.Write(a[i] + " " ); } // Driver code public static void Main() { int n = 26, k = 6; solve(n, k); } } // This code contributed by anuj_67.. |
PHP
<?php // PHP implementation of the approach // Function that print the // desired array which // satisfies the given conditions function solve( $n , $k ) { $mini = 0; $x1 = 1; $a = array (); for ( $i = 1; $i <= $k ; $i ++) { $mini += $x1 ; $a [ $i - 1] = $x1 ; $x1 += 1; } // If the lowest filling condition // is void, then it is not possible to // generate the required array if ( $n < $mini ) { echo "-1" ; return ; } $rem = $n - $mini ; $cnt = floor ( $rem / $k ); $rem = $rem % $k ; // Increase all the elements by cnt for ( $i = 0; $i < $k ; $i ++) $a [ $i ] += $cnt ; // Start filling from the back // till the number is a[i+1] <= 2*a[i] for ( $i = $k - 1; $i > 0 && $rem > 0; $i --) { // Get the number to be filled $xx = $a [ $i - 1] * 2; $left = $xx - $a [ $i ]; // If it is less than the // remaining numbers to be filled if ( $rem >= $left ) { $a [ $i ] = $xx ; $rem -= $left ; } // less than remaining numbers // to be filled else { $a [ $i ] += $rem ; $rem = 0; } } // Get the sum of the array $sum = $a [0]; for ( $i = 1; $i < $k ; $i ++) { // If this condition is void at any stage // during filling up, then print -1 if ( $a [ $i ] > 2 * $a [ $i - 1]) { echo "-1" ; return ; } // Else add it to the sum $sum += $a [ $i ]; } // If the sum condition is not // satisfied, then print -1 if ( $sum != $n ) { echo "-1" ; return ; } // Print the generated array for ( $i = 0; $i < $k ; $i ++) echo $a [ $i ], " " ; } // Driver code $n = 26; $k = 6; solve( $n , $k ); // This code is contributed by AnkitRai01 ?> |
Javascript
<script> // JavaScript implementation of the approach // Function that print the // desired array which // satisfies the given conditions function solve(n, k) { let mini = 0; let x1 = 1; let a = new Array(k); for (let i = 1; i <= k; i++) { mini += x1; a[i - 1] = x1; x1 += 1; } // If the lowest filling condition // is void, then it is not possible to // generate the required array if (n < mini) { document.write( "-1" ); return ; } let rem = n - mini; let cnt = parseInt(rem / k); rem = rem % k; // Increase all the elements by cnt for (let i = 0; i < k; i++) a[i] += cnt; // Start filling from the back // till the number is a[i+1] <= 2*a[i] for (let i = k - 1; i > 0 && rem > 0; i--) { // Get the number to be filled let xx = a[i - 1] * 2; let left = xx - a[i]; // If it is less than the // remaining numbers to be filled if (rem >= left) { a[i] = xx; rem -= left; } // less than remaining numbers // to be filled else { a[i] += rem; rem = 0; } } // Get the sum of the array let sum = a[0]; for (let i = 1; i < k; i++) { // If this condition is void at any stage // during filling up, then print -1 if (a[i] > 2 * a[i - 1]) { document.write( "-1" ); return ; } // Else add it to the sum sum += a[i]; } // If the sum condition is not // satisfied, then print -1 if (sum != n) { document.write( "-1" ); return ; } // Print the generated array for (let i = 0; i < k; i++) document.write(a[i] + " " ); } // Driver code let n = 26, k = 6; solve(n, k); </script> |
1 2 3 4 6 10
Time Complexity: O(K), as there are loops that runs from 0 to (k – 1).
Auxiliary Space: O(K), as no extra space has been taken.
Please Login to comment...