Generate an array consisting of most frequent greater elements present on the right side of each array element
Given an array A[] of size N, the task is to generate an array B[] based on the following conditions:
- For every array element A[i], find the most frequent element greater than A[i] present on the right of A[i]. Insert that element into B[].
- If more than one such element is present on the right, choose the element having the smallest value.
- If no element greater than A[i] is present on the right of A[i], then insert -1 into B[].
Finally, print the array B[] that is obtained.
Examples:
Input: A[] = {4, 5, 2, 25, 10, 5, 10, 3, 10, 5}
Output: 5, 10, 10, -1, -1, 10, -1, 5, -1, -1
Explanation:
A[0] (= 4): Array elements greater than 4 are {5, 25, 10}. Since 5 occurs maximum number of times, set B[0] = 5.
A[1] (= 5): Array elements greater than 5 are {25, 10}. Since 10 occurs maximum number of times, set B[1] = 10.
A[2] (= 2): Array elements greater than 2 are {5, 25, 10}. Since 10 occurs maximum number of times, set B[2] = 10.
A[3] (= 25): No element greater than A[3] found on its right. Therefore, set B[3] = -1.
A[4] (= 10): No element greater than A[4] found on its right. Therefore, set B[4] = -1.
Similarly, set B[5] = 10, B[6] = -1, B[7] = 5, B[8] = -1, B[9] = -1.
Therefore, the obtained array is B[] = {5, 10, 10, -1, -1, 10, -1, 5, -1, -1}.Input: A[] = {1, 1, 3, 3, 2, 2}
Output: 2, 2, -1, -1, -1, -1
Naive Approach: Follow the steps below to solve the problem:
- Initialize an array, say V, to store the resultant array elements.
- Traverse the array A[] using a variable, say i, and perform the following operations:
- Initialize variables ans as -1 and freq as 0, to store the result for the current index and its frequency.
- Iterate over the range [i+1, N-1] using a variable, say j, and perform the following operations:
- If the frequency of A[j] ≤ A[i], then continue.
- Otherwise, check if the frequency of A[j] > freq. If found to be true, then update ans to A[j] and freq to the frequency of A[j].
- Otherwise, if the frequency of A[j] is equal to freq, then update ans to a smaller value among A[j] and ans.
- Insert the value of ans to the array, V.
- Print the array, V as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to generate an array containing // the most frequent greater element on the // right side of each array element void findArray( int arr[], int n) { // Stores the generated array vector< int > v; // Traverse the array arr[] for ( int i = 0; i < n; i++) { // Store the result for the // current index and its frequency int ans = -1, old_c = 0; // Iterate over the right subarray for ( int j = i + 1; j < n; j++) { if (arr[j] > arr[i]) { // Store the frequency of // the current array element int curr_c = count(&arr[j], &arr[n], arr[j]); // If the frequencies are equal if (curr_c == old_c) { // Update ans to smaller // of the two elements if (arr[j] < ans) ans = arr[j]; } // If count of new element // is more than count of ans if (curr_c > old_c) { ans = arr[j]; old_c = curr_c; } } } // Insert answer in the array v.push_back(ans); } // Print the resultant array for ( int i = 0; i < v.size(); i++) cout << v[i] << " " ; } // Driver Code int main() { // Given Input int arr[] = { 4, 5, 2, 25, 10, 5, 10, 3, 10, 5 }; int size = sizeof (arr) / sizeof (arr[0]); findArray(arr, size); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to generate an array containing // the most frequent greater element on the // right side of each array element static void findArray( int arr[], int n) { // Stores the generated array Vector<Integer> v = new Vector<Integer>(); // Traverse the array arr[] for ( int i = 0 ; i < n; i++) { // Store the result for the // current index and its frequency int ans = - 1 , old_c = 0 ; // Iterate over the right subarray for ( int j = i + 1 ; j < n; j++) { if (arr[j] > arr[i]) { // Store the frequency of // the current array element int curr_c = 0 ; for ( int k = j; k < n; k++) { if (arr[k] == arr[j]) { curr_c++; } }; // If the frequencies are equal if (curr_c == old_c) { // Update ans to smaller // of the two elements if (arr[j] < ans) ans = arr[j]; } // If count of new element // is more than count of ans if (curr_c > old_c) { ans = arr[j]; old_c = curr_c; } } } // Insert answer in the array v.add(ans); } // Print the resultant array for ( int i = 0 ; i < v.size(); i++) System.out.print(v.get(i) + " " ); } // Driver Code public static void main (String[] args) { // Given Input int arr[] = { 4 , 5 , 2 , 25 , 10 , 5 , 10 , 3 , 10 , 5 }; int size = arr.length; findArray(arr, size); } } // This code is contributed by jana_sayantan |
Python3
# Python3 program for the above approach # Function to generate an array containing # the most frequent greater element on the # right side of each array element def findArray(arr, n): # Stores the generated array v = [] # Traverse the array arr[] for i in range (n): # Store the result for the # current index and its frequency ans = - 1 old_c = 0 # Iterate over the right subarray for j in range (i + 1 , n): if (arr[j] > arr[i]): # Store the frequency of # the current array element curr_c = arr[j : n + 1 ].count(arr[j]) # If the frequencies are equal if (curr_c = = old_c): # Update ans to smaller # of the two elements if (arr[j] < ans): ans = arr[j] # If count of new element # is more than count of ans if (curr_c > old_c): ans = arr[j] old_c = curr_c # Insert answer in the array v.append(ans) # Print the resultant array for i in range ( len (v)): print (v[i], end = " " ) # Driver Code if __name__ = = '__main__' : # Given Input arr = [ 4 , 5 , 2 , 25 , 10 , 5 , 10 , 3 , 10 , 5 ] size = len (arr) findArray(arr, size) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to generate an array containing // the most frequent greater element on the // right side of each array element static void findArray( int [] arr, int n) { // Stores the generated array List< int > v = new List< int >(); // Traverse the array arr[] for ( int i = 0; i < n; i++) { // Store the result for the // current index and its frequency int ans = -1, old_c = 0; // Iterate over the right subarray for ( int j = i + 1; j < n; j++) { if (arr[j] > arr[i]) { // Store the frequency of // the current array element int curr_c = 0; for ( int k = j; k < n; k++) { if (arr[k] == arr[j]) { curr_c++; } }; // If the frequencies are equal if (curr_c == old_c) { // Update ans to smaller // of the two elements if (arr[j] < ans) ans = arr[j]; } // If count of new element // is more than count of ans if (curr_c > old_c) { ans = arr[j]; old_c = curr_c; } } } // Insert answer in the array v.Add(ans); } // Print the resultant array for ( int i = 0; i < v.Count; i++) Console.Write(v[i] + " " ); } // Driver Code public static void Main() { // Given Input int [] arr= { 4, 5, 2, 25, 10, 5, 10, 3, 10, 5 }; int size = arr.Length; findArray(arr, size); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // Javascript program for the above approach // Function to generate an array containing // the most frequent greater element on the // right side of each array element function findArray(arr, n) { // Stores the generated array let v = new Array(); // Traverse the array arr[] for (let i = 0; i < n; i++) { // Store the result for the // current index and its frequency let ans = -1, old_c = 0; // Iterate over the right subarray for (let j = i + 1; j < n; j++) { if (arr[j] > arr[i]) { // Store the frequency of // the current array element // let curr_c = count(&arr[j], &arr[n], arr[j]); let curr_c = 0; arr.slice(j, n).forEach((item) => { if (item == arr[j]) { curr_c++ } }) // If the frequencies are equal if (curr_c == old_c) { // Update ans to smaller // of the two elements if (arr[j] < ans) ans = arr[j]; } // If count of new element // is more than count of ans if (curr_c > old_c) { ans = arr[j]; old_c = curr_c; } } } // Insert answer in the array v.push(ans); } // Print the resultant array for (let i = 0; i < v.length; i++) document.write(v[i] + " " ); } // Driver Code // Given Input let arr = [4, 5, 2, 25, 10, 5, 10, 3, 10, 5]; let size = arr.length findArray(arr, size); // This code is contributed by _saurabh_jaiswal </script> |
5 10 10 -1 -1 10 -1 5 -1 -1
Time Complexity: O(N2), as we are using nested loops for traversing N*N times.
Auxiliary Space: O(N), as we are using extra space for storing generated array
Please Login to comment...