Generate all possible strings such that char at index i is either str1[i] or str2[i]

Given two strings str1 and str2 each of length N, the task is to generate and print all possible strings of length N such that the character at index i of the generated string is either str1[i] or str2[i]

Examples:

Input: str1 = “abc”, str2 = “def”
Output:
abc
abf
aec
aef
dbc
dbf
dec
def



Input: str1 = “a”, str2 = “b”
Output:
a
b

Approach: The problem can be solved using recursion and at each recursive call, we need to select either the character at str1[i] or the character at str2[i] and append it to the resultant string. The termination condition will be when the length of the resultant string becomes equal to the length of the given strings.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Recursive function to generate
// the required strings
void generateStr(char* a, char* b, string s,
                 int count, int len)
{
  
    // If length of the current string is
    // equal to the length of the given
    // strings then the current string
    // is part of the result
    if (count == len) {
        cout << s << endl;
        return;
    }
  
    // Choosing the current character
    // from the string a
    generateStr(a + 1, b + 1, s + (*a),
                count + 1, len);
  
    // Choosing the current character
    // from the string b
    generateStr(a + 1, b + 1, s + (*b),
                count + 1, len);
}
  
// Driver code
int main()
{
    char *a = "abc", *b = "def";
    int n = strlen(a);
  
    // Third argument is an empty
    // string that we will be appended
    // in the recursion calls
    // Fourth arguments is the length of
    // the resultant string so far
    generateStr(a, b, "", 0, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
  
class GFG 
{
  
    // Recursive function to generate
    // the required strings
    public static void generateStr(String a, String b, 
                                String s, int count, int len)
    {
  
        // If length of the current string is
        // equal to the length of the given
        // strings then the current string
        // is part of the result
        if (count == len) 
        {
            System.out.println(s);
            return;
        }
  
        // Choosing the current character
        // from the string a
        generateStr(a.substring(1), b.substring(1),
                      s + a.charAt(0), count + 1, len);
  
        // Choosing the current character
        // from the string b
        generateStr(a.substring(1), b.substring(1), 
                    s + b.charAt(0), count + 1, len);
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        String a = "abc", b = "def";
        int n = a.length();
  
        // Third argument is an empty
        // string that we will be appended
        // in the recursion calls
        // Fourth arguments is the length of
        // the resultant string so far
        generateStr(a, b, "", 0, n);
  
    }
}
  
// This code is contributed by
// sanjeev2552

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Recursive function to generate
# the required strings
def generateStr(a, b, s, count, len):
  
    # If length of the current string is
    # equal to the length of the given
    # strings then the current string
    # is part of the result
    if (count == len): 
        print(s);
        return;
  
    # Choosing the current character
    # from the string a
    generateStr(a[1:], b[1:],
                s + a[0], count + 1, len);
  
    # Choosing the current character
    # from the string b
    generateStr(a[1:], b[1:], 
                s + b[0], count + 1, len);
  
# Driver code
a = "abc"; b = "def";
n = len(a);
  
# Third argument is an empty
# string that we will be appended
# in the recursion calls
# Fourth arguments is the length of
# the resultant string so far
generateStr(a, b, "", 0, n);
  
# This code is contributed by Princi Singh 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
      
class GFG 
{
  
    // Recursive function to generate
    // the required strings
    public static void generateStr(String a, String b, 
                                     String s, int count,
                                               int len)
    {
  
        // If length of the current string is
        // equal to the length of the given
        // strings then the current string
        // is part of the result
        if (count == len) 
        {
            Console.WriteLine(s);
            return;
        }
  
        // Choosing the current character
        // from the string a
        generateStr(a.Substring(1), b.Substring(1),
                    s + a[0], count + 1, len);
  
        // Choosing the current character
        // from the string b
        generateStr(a.Substring(1), b.Substring(1), 
                    s + b[0], count + 1, len);
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
        String a = "abc", b = "def";
        int n = a.Length;
  
        // Third argument is an empty
        // string that we will be appended
        // in the recursion calls
        // Fourth arguments is the length of
        // the resultant string so far
        generateStr(a, b, "", 0, n);
    }
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

abc
abf
aec
aef
dbc
dbf
dec
def


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.