Given a positive integer N, the task is to construct a matrix of size N * N such that all the matrix elements are distinct from the range [1, N2] and the sum of elements in both the diagonals of every 2 * 2 submatrices is even.
Examples:
Input: N = 3
Output:
1 2 3
4 5 6
7 8 9
Explanation:
Diagonal elements of every 2 * 2 matrices in the output matrix are { {1, 5}, {2, 4}, {2, 6}, {3, 5}, {4, 8}, {5, 7}, {5, 9}, {6, 8} }. It can be observed that the sum of every diagonal is even.
Input: N = 4
Output:
1 2 3 4
6 5 8 7
9 10 11 12
14 13 16 15
Approach: Follow the steps below to solve the problem:
- Initialize a matrix, say mat[][], to store the matrix elements such that all the matrix elements are distinct from the range [1, N2] and the sum of matrix elements in both the diagonals of every 2 * 2 submatrices is even.
- Initialize a variable, say odd = 1, to store odd numbers.
- Initialize a variable, say even = 2, to store even numbers.
- Fill all the matrix elements, mat[i][j], by checking the following conditions:
- If (i + j) % 2 = 0, then set mat[i][j] = odd and update odd += 2.
- Otherwise, set mat[i][j] = even and update even += 2.
- Finally, print the matrix mat[][].
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void generateMatrix( int N)
{
int odd = 1;
int even = 2;
int mat[N + 1][N + 1];
for ( int i = 1; i <= N; i++) {
for ( int j = 1; j <= N; j++) {
if ((i + j) % 2 == 0) {
mat[i][j] = odd;
odd += 2;
}
else {
mat[i][j] = even;
even += 2;
}
}
}
for ( int i = 1; i <= N; i++) {
for ( int j = 1; j <= N; j++) {
cout << mat[i][j] << " " ;
}
cout << endl;
}
}
int main()
{
int N = 4;
generateMatrix(N);
return 0;
}
|
Java
import java.io.*;
class GFG{
static void generateMatrix( int N)
{
int odd = 1 ;
int even = 2 ;
int [][] mat = new int [N + 1 ][N + 1 ];
for ( int i = 1 ; i <= N; i++)
{
for ( int j = 1 ; j <= N; j++)
{
if ((i + j) % 2 == 0 )
{
mat[i][j] = odd;
odd += 2 ;
}
else
{
mat[i][j] = even;
even += 2 ;
}
}
}
for ( int i = 1 ; i <= N; i++)
{
for ( int j = 1 ; j <= N; j++)
{
System.out.print(mat[i][j] + " " );
}
System.out.println();
}
}
public static void main(String[] args)
{
int N = 4 ;
generateMatrix(N);
}
}
|
Python3
def generateMatrix(N):
odd = 1 ;
even = 2 ;
mat = [[ 0 for i in range (N + 1 )] for j in range (N + 1 )] ;
for i in range ( 1 , N + 1 ):
for j in range ( 1 , N + 1 ):
if ((i + j) % 2 = = 0 ):
mat[i][j] = odd;
odd + = 2 ;
else :
mat[i][j] = even;
even + = 2 ;
for i in range ( 1 , N + 1 ):
for j in range ( 1 , N + 1 ):
print (mat[i][j], end = " " );
print ();
if __name__ = = '__main__' :
N = 4 ;
generateMatrix(N);
|
C#
using System;
class GFG{
static void generateMatrix( int N)
{
int odd = 1;
int even = 2;
int [,] mat = new int [N + 1, N + 1];
for ( int i = 1; i <= N; i++)
{
for ( int j = 1; j <= N; j++)
{
if ((i + j) % 2 == 0)
{
mat[i, j] = odd;
odd += 2;
}
else
{
mat[i, j] = even;
even += 2;
}
}
}
for ( int i = 1; i <= N; i++)
{
for ( int j = 1; j <= N; j++)
{
Console.Write(mat[i, j] + " " );
}
Console.WriteLine();
}
}
static public void Main()
{
int N = 4;
generateMatrix(N);
}
}
|
Javascript
<script>
function generateMatrix(N)
{
let odd = 1;
let even = 2;
let mat = new Array(N + 1);
for ( var i = 0; i < mat.length; i++) {
mat[i] = new Array(2);
}
for (let i = 1; i <= N; i++)
{
for (let j = 1; j <= N; j++)
{
if ((i + j) % 2 == 0)
{
mat[i][j] = odd;
odd += 2;
}
else
{
mat[i][j] = even;
even += 2;
}
}
}
for (let i = 1; i <= N; i++)
{
for (let j = 1; j <= N; j++)
{
document.write(mat[i][j] + " " );
}
document.write( "<br/>" );
}
}
let N = 4;
generateMatrix(N);
</script>
|
Output: 1 2 3 4
6 5 8 7
9 10 11 12
14 13 16 15
Time Complexity: O(N2)
Auxiliary Space: O(N2)