GCD of digits of a given number

Given a number n, find GCD of its digits.

Examples :

Input  : 345
Output : 1
GCD of 3, 4 and 5 is 1.

Input  : 2448
Output : 2
GCD of 2, 4, 4 and 8 is 2



We traverse the digits of number one by one using below loop

digit = n mod 10;
n  = n / 10; 

While traversing digits, we keep track of current GCD and keep updating GCD by finding GCD of current digit with current GCD.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find GCD of digits of a number
#include<iostream>
#include<algorithm>
using namespace std;
  
int digitGCD(int n)
{
    int gcd = 0;
    while (n > 0)
    {        
        gcd = __gcd(n%10, gcd);
  
        // If at point GCD becomes 1,
        // return it
        if (gcd == 1)
           return 1;
  
        n = n/10;
    }
    return gcd;
}
  
// driver code
int main()
{
    long n = 2448;
    cout << digitGCD(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find GCD of digits of a number
  
class GFG
{
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    
        return b == 0 ? a : __gcd(b, a % b); 
          
    }
    static int digitGCD(int n)
    {
        int gcd = 0;
        while (n > 0)
        {     
            gcd = __gcd(n % 10, gcd);
      
            // If at point GCD becomes 1,
            // return it
            if (gcd == 1)
            return 1;
      
            n = n / 10;
        }
        return gcd;
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        int n = 2448;
        System.out.print(digitGCD(n));
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find 
# GCD of digits of a number
  
# Recursive function to return gcd of a and b
def __gcd(a,b):
    return a if(b==0) else __gcd(b, a % b)
      
def digitGCD(n):
  
    gcd = 0
    while (n > 0):
      
        gcd = __gcd(n % 10, gcd)
   
        # If at point GCD becomes 1,
        # return it
        if (gcd == 1):
           return 1
   
        n = n // 10
      
    return gcd
  
#Driver code
n = 2448
print(digitGCD(n))
  
# This code is contributed
# by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find GCD of
// digits of a number
using System;
  
class GFG {
      
    // Recursive function to return 
    // gcd of a and b
    static int __gcd(int a, int b)
    
        return b == 0 ? a : __gcd(b, a % b); 
          
    }
      
    static int digitGCD(int n)
    {
        int gcd = 0;
        while (n > 0)
        {     
            gcd = __gcd(n % 10, gcd);
      
            // If at point GCD becomes 1,
            // return it
            if (gcd == 1)
            return 1;
      
            n = n / 10;
        }
        return gcd;
    }
      
    // Driver code
    public static void Main () 
    {
        int n = 2448;
        Console.Write(digitGCD(n));
    }
}
  
// This code is contributed by Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find GCD 
// of digits of a number
  
// Recursive function to 
// return gcd of a and b
function __gcd($a,$b)
    return $b == 0 ? $a
      __gcd($b, $a % $b); 
          
}
      
function digitGCD($n)
{
    $gcd = 0;
    while ($n > 0)
    {     
        $gcd = __gcd($n % 10, $gcd);
  
        // If at point GCD 
        // becomes 1, return it
        if ($gcd == 1)
        return 1;
  
        $n = $n / 10;
    }
    return $gcd;
}
  
// Driver code
$n = 2448;
echo digitGCD($n);
  
// This code is contributed by Sam007
?>

chevron_right



Output :

2

This article is contributed by Dibyendu Roy Chaudhuri. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, Sam007



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.