Gaussian Filter Generation in C++
Gaussian Filtering is widely used in the field of image processing. It is used to reduce the noise of an image. In this article we will generate a 2D Gaussian Kernel. The 2D Gaussian Kernel follows the below given Gaussian Distribution.
Where, y is the distance along vertical axis from the origin, x is the distance along horizontal axis from the origin and σ is the standard deviation.
Implementation in C++
C++
// C++ program to generate Gaussian filter #include <cmath> #include <iomanip> #include <iostream> using namespace std; // Function to create Gaussian filter void FilterCreation( double GKernel[][5]) { // initialising standard deviation to 1.0 double sigma = 1.0; double r, s = 2.0 * sigma * sigma; // sum is for normalization double sum = 0.0; // generating 5x5 kernel for ( int x = -2; x <= 2; x++) { for ( int y = -2; y <= 2; y++) { r = sqrt (x * x + y * y); GKernel[x + 2][y + 2] = ( exp (-(r * r) / s)) / (M_PI * s); sum += GKernel[x + 2][y + 2]; } } // normalising the Kernel for ( int i = 0; i < 5; ++i) for ( int j = 0; j < 5; ++j) GKernel[i][j] /= sum; } // Driver program to test above function int main() { double GKernel[5][5]; FilterCreation(GKernel); for ( int i = 0; i < 5; ++i) { for ( int j = 0; j < 5; ++j) cout << GKernel[i][j] << "\t" ; cout << endl; } } |
Output:
0.00296902 0.0133062 0.0219382 0.0133062 0.00296902 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.0219382 0.0983203 0.162103 0.0983203 0.0219382 0.0133062 0.0596343 0.0983203 0.0596343 0.0133062 0.00296902 0.0133062 0.0219382 0.0133062 0.00296902
References:
https://en.wikipedia.org/wiki/Gaussian_filter
This article is contributed by Harsh Agarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...