G is a simple undirected graph. Some vertices of G are of odd degree. Add a node v to G and make it adjacent to each odd degree vertex of G. The resultant graph is sure to be
(A) regular
(B) Complete
(C) Hamiltonian
(D) Euler
Answer: (D)
Explanation: For a graph to be Euler graph all the degrees must be Even for all nodes. In any graph all the Odd degree nodes are connected with a node.
And number of Odd degree vertices should be even.
So degree of this new node will be Even and as a new edge is formed between this new node and all other nodes of Odd degree hence here is not a single node exists with degree Odd
=> Euler Graph
Quiz of this Question
Level Up Your GATE Prep!
Embark on a transformative journey towards GATE success by choosing
Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need.
Last Updated :
28 Jun, 2021
Like Article
Save Article