Skip to content
Related Articles

Related Articles

GATE | GATE CS 2011 | Question 37
  • Difficulty Level : Medium
  • Last Updated : 06 Dec, 2013

Which of the given options provides the increasing order of asymptotic complexity of functions f1, f2, f3 and f4?

f1(n) = 2^n
f2(n) = n^(3/2)
f3(n) = nLogn
f4(n) = n^(Logn)
(A) f3, f2, f4, f1
(B) f3, f2, f1, f4
(C) f2, f3, f1, f4
(D) f2, f3, f4, f1


Answer: (A)

Explanation: nLogn is the slowest growing function, then comes n^(3/2), then n^(Logn).  Finally, 2^n is the fastest growing function.

Quiz of this Question

sudo-gate-course

My Personal Notes arrow_drop_up