GATE | GATE-CS-2007 | Question 85
Define the connective * for the Boolean variables X and Y as: X * Y = XY + X’ Y’. Let Z = X * Y.
Consider the following expressions P, Q and R. P: X = Y⋆Z Q: Y = X⋆Z R: X⋆Y⋆Z=1
Which of the following is TRUE?
(A) Only P and Q are valid
(B) Only Q and R are valid.
(C) Only P and R are valid.
(D) All P, Q, R are valid.
Answer: (D)
Explanation: * is nothing but working as EX NOR here.Explanation:
P:
X= Y * Z =(Y XOR Z)’ =YZ + Y’Z’ =Y(XY + X’Y’)+Y’(XY+X’Y’)’ =XY+Y’((Y XOR X)’)’ =XY+Y’(Y XOR X) =XY+Y’(Y’X+X’Y) =XY+Y’X =X(Y+Y’) =X
Q:
Y=X*Z =(X XOR Z)’ =X(XY + X’Y’) + X’(XY + X’Y’)’ =XY+X’(X’Y+XY’) =XY+X’Y =Y
R:
X * Y *Z WE HAVE SEEN FROM P Y*Z =X SO X * X
- NOT(X XOR X)=X’X’+XX
- 1
SO ALL P,Q,R ARE CORRECT
ANS IS (D)
Please Login to comment...