Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

GATE | GATE-CS-2006 | Question 4

  • Last Updated : 21 Oct, 2021

A relation R is defined on ordered pairs of integers as follows: (x,y) R(u,v) if x < u and y > v. Then R is:
Then R is:
(A) Neither a Partial Order nor an Equivalence Relation
(B) A Partial Order but not a Total Order
(C) A Total Order
(D) An Equivalence Relation


Answer: (A)

Explanation: An equivalence relation on a set x is a subset of x*x, i.e., a collection R of ordered pairs of elements of x, satisfying certain properties. Write “x R y” to mean (x,y) is an element of R, and we say “x is related to y,” then the properties are:
1. Reflexive: a R a for all a Є R,
2. Symmetric: a R b implies that b R a for all a,b Є R
3. Transitive: a R b and b R c imply a R c for all a,b,c Є R.

An partial order relation on a set x is a subset of x*x, i.e., a collection R of ordered pairs of elements of x, satisfying certain properties. Write “x R y” to mean (x,y) is an element of R, and we say “x is related to y,” then the properties are:
1. Reflexive: a R a for all a Є R,
2. Anti-Symmetric: a R b and b R a implies that for all a,b Є R
3. Transitive: a R b and b R c imply a R c for all a,b,c Є R.

Attention reader! Don’t stop learning now.  Practice GATE exam well before the actual exam with the subject-wise and overall quizzes available in GATE Test Series Course.

Learn all GATE CS concepts with Free Live Classes on our youtube channel.

An total order relation a set x is a subset of x*x, i.e., a collection R of ordered pairs of elements of x, satisfying certain properties. Write “x R y” to mean (x,y) is an element of R, and we say “x is related to y,” then the properties are:
1. Reflexive: a R a for all a Є R,
2. Anti-Symmetric: a R b implies that b R a for all a,b Є R
3. Transitive: a R b and b R c imply a R c for all a,b,c Є R.
4. Comparability : either a R b or b R a for all a,b Є R.



As given in question, a relation R is defined on ordered pairs of integers as follows: (x,y) R(u,v) if x < u and y > v , reflexive property is not satisfied here, because there is > or < relationship between (x ,y) pair set and (u,v) pair set . Other way , if there would have been x <= u and y>= v (or x=u and y=v) kind of relation among elements of sets then reflexive property could have been satisfied. Since reflexive property in not satisfied here , so given relation can not be equivalence, partial orderor total order relation.

So, option (A) is correct.

This solution is contributed by Nirmal Bharadwaj.

Quiz of this Question

My Personal Notes arrow_drop_up
Recommended Articles
Page :