m identical balls are to be placed in n distinct bags. You are given that m ≥ kn, where, k is a natural number ≥ 1. In how many ways can the balls be placed in the bags if each bag must contain at least k balls?

(A)
C
(B)
D
(C)
B
(D)
A
Answer: (C)
Explanation:
This is very simple application of stars and bars. Since we want atleast k balls in each bag, so first we put kn balls into bags, k balls in each bag. Now we are left with m – kn balls, and we have to put them into n bags such that each bag may receive 0 or more balls. So applying theorem 2 of stars and bars with m – nk stars and n bars, we get number of ways to be m−kn+n-1 Cn−1. So option (B) is correct.
Quiz of this Question
Please comment below if you find anything wrong in the above post
Level Up Your GATE Prep!
Embark on a transformative journey towards GATE success by choosing
Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need.
Last Updated :
28 Jun, 2021
Like Article
Save Article