Skip to content
Related Articles

Related Articles

Improve Article
GATE | GATE-CS-2001 | Question 50
  • Last Updated : 05 Dec, 2014

How many undirected graphs (not necessarily connected) can be constructed out of a given set V = {v1, v2, … vn} of n vertices?
(A) n(n-1)/2
(B) 2n
(C) n!
(D) 2n(n-1)/2


Answer: (D)

Explanation: There are total n*(n-1)/2 possible edges. For every edge, there are to possible options, either we pick it or don’t pick. So total number of possible graphs is 2n(n-1)/2.

Quiz of this Question

Attention reader! Don’t stop learning now. Learn all GATE CS concepts with Free Live Classes on our youtube channel.

My Personal Notes arrow_drop_up
Recommended Articles
Page :