Skip to content
Related Articles
Open in App
Not now

Related Articles

Gamma Function

Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 16 Jun, 2020
Improve Article
Save Article

Gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers.

Gamma function denoted by \Gamma\left (p \right) is defined as:
 \Gamma\left(p \right) = \int_{0}^{\infty}e^{-t} t^{p-1} dt where p>0.
Gamma function is also known as Euler’s integral of second kind.
Integrating Gamma function by parts we get,
\Gamma\left (p+1 \right) = \int_{0}^{\infty}e^{-t} t^{p} dt
=-e^{-t} t^p \Biggr |_{0}^{\infty}+p\int_{0}^{\infty}e^{-t} t^{p-1} dt
=0+p\Gamma\left (p \right)
Thus \Gamma\left (p+1 \right) = p\Gamma\left (p \right)

Some standard results:

  1. \Gamma\left (1/2 \right) = \sqrt \pi
    We know that \Gamma\left(1/2 \right) = \int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t} dt
    Put t=u^2
    Thus \Gamma\left(1/2 \right) = 2\int_{0}^{\infty}e^{{-u^2}}du
    \Gamma\left(1/2 \right) .\Gamma\left(p \right) = (2\int_{0}^{\infty}e^{{-u^2}}du)(2\int_{0}^{\infty}e^{{-u^2}}du)
    =4\int_{0}^{\infty} \int_{0}^{\infty}e^{-{u^2 + v^2}} du dv
    Now changing to polar coordinates by using u = r cosθ and v = r sinθ
    Thus {\Gamma\left(1/2 \right)}^2 = 4\int_{\theta=0}^{\pi/2}\int_{r=0}^{\infty}e^{-{r^2}} dr d\theta
    =4\int_{0}^{\pi/2} -\frac{1}{2}e^{-r^2}\Biggr|_{r=0}^{\infty}
    =2\int_{0}^{\pi/2}d\theta =  2.\theta \Biggr|_{0}^{\pi/2}=\pi
    Hence \Gamma\left (1/2 \right) = \sqrt \pi

  2. \Gamma\left(n+1 \right) = (m+1)^{n+1}(-1)^n \int_{0}^{1}x^m (ln x)^n dx
    Where n is a positive integer and m>-1
    Put x=e^-y such that dx=-e-ydy=-x dy
    \int_{0}^{1}x^m(ln x)^n dx= \int_{0}^{\infty}e^{-my} . (-y)^n e^{-y} dy
    (-1)^n \int_{0}^{\infty} y^n . e^{-(m+1)y} dy
    Put (m+1)y = u
    =(-1)^n \int_{0}^{\infty}\frac{u^n}{(m+1)^n}.e^{-u} .\frac{du}{m+1}
    =\frac{(-1)^n}{(m+1)^n+1}\int_{0}^{\infty}e^{-u} .u^n du = \frac{(-1)^n}{(m+1)^{n+1}}.\Gamma\left(n+1\right)

Compute \Gamma\left(4.5\right).

Explanation :
Using \Gamma\left(p+1\right)=p\Gamma\left(p\right)
\Gamma\left(4.5\right)=\Gamma\left(3.5+1 \right)=3.5\Gamma\left(3.5\right)
We know \Gamma\left(0.5\right)=\sqrt\pi
Thus \Gamma\left(4.5\right)=6.5625\sqrt\pi

Evaluate I=\int_{0}^{\infty}x^4 e^-{x^4} dx

Explanation :
Put x4 = t, 4x3dx = dt, dx = ¼ t-3/4 dt
I=\int_{0}^{\infty}t.e^{-t} \frac{t^{-3/4}}{4}dt
= \frac{1}{4}\int_{0}^{\infty}e^{-t} t^{3/4} dt
= \frac{1}{4}\Gamma\left(1+\frac{1}{4}\right)
= \frac{1}{4}\Gamma\left(\frac{5}{4}\right)

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!