Gamma Function

Gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers.

Gamma function denoted by \Gamma\left (p \right) is defined as:
 \Gamma\left(p \right) = \int_{0}^{\infty}e^{-t} t^{p-1} dt where p>0.
Gamma function is also known as Euler’s integral of second kind.
Integrating Gamma function by parts we get,
\Gamma\left (p+1 \right) = \int_{0}^{\infty}e^{-t} t^{p} dt
=-e^{-t} t^p \Biggr |_{0}^{\infty}+p\int_{0}^{\infty}e^{-t} t^{p-1} dt
=0+p\Gamma\left (p \right)
Thus \Gamma\left (p+1 \right) = p\Gamma\left (p \right)

Some standard results:

  1. \Gamma\left (1/2 \right) = \sqrt \pi
    We know that \Gamma\left(1/2 \right) = \int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t} dt
    Put t=u^2
    Thus \Gamma\left(1/2 \right) = 2\int_{0}^{\infty}e^{{-u^2}}du
    \Gamma\left(1/2 \right) .\Gamma\left(p \right) = (2\int_{0}^{\infty}e^{{-u^2}}du)(2\int_{0}^{\infty}e^{{-u^2}}du)
    =4\int_{0}^{\infty} \int_{0}^{\infty}e^{-{u^2 + v^2}} du dv
    Now changing to polar coordinates by using u = r cosθ and v = r sinθ
    Thus {\Gamma\left(1/2 \right)}^2 = 4\int_{\theta=0}^{\pi/2}\int_{r=0}^{\infty}e^{-{r^2}} dr d\theta
    =4\int_{0}^{\pi/2} -\frac{1}{2}e^{-r^2}\Biggr|_{r=0}^{\infty}
    =2\int_{0}^{\pi/2}d\theta =  2.\theta \Biggr|_{0}^{\pi/2}=\pi
    Hence \Gamma\left (1/2 \right) = \sqrt \pi

  2. \Gamma\left(n+1 \right) = (m+1)^{n+1}(-1)^n \int_{0}^{1}x^m (ln x)^n dx
    Where n is a positive integer and m>-1
    Put x=e^-y such that dx=-e-ydy=-x dy
    \int_{0}^{1}x^m(ln x)^n dx= \int_{0}^{\infty}e^{-my} . (-y)^n e^{-y} dy
    (-1)^n \int_{0}^{\infty} y^n . e^{-(m+1)y} dy
    Put (m+1)y = u
    =(-1)^n \int_{0}^{\infty}\frac{u^n}{(m+1)^n}.e^{-u} .\frac{du}{m+1}
    =\frac{(-1)^n}{(m+1)^n+1}\int_{0}^{\infty}e^{-u} .u^n du = \frac{(-1)^n}{(m+1)^{n+1}}.\Gamma\left(n+1\right)

Compute \Gamma\left(4.5\right).

Explanation :
Using \Gamma\left(p+1\right)=p\Gamma\left(p\right)
\Gamma\left(4.5\right)=\Gamma\left(3.5+1 \right)=3.5\Gamma\left(3.5\right)
We know \Gamma\left(0.5\right)=\sqrt\pi
Thus \Gamma\left(4.5\right)=6.5625\sqrt\pi

Evaluate I=\int_{0}^{\infty}x^4 e^-{x^4} dx

Explanation :
Put x4 = t, 4x3dx = dt, dx = ¼ t-3/4 dt
I=\int_{0}^{\infty}t.e^{-t} \frac{t^{-3/4}}{4}dt
= \frac{1}{4}\int_{0}^{\infty}e^{-t} t^{3/4} dt
= \frac{1}{4}\Gamma\left(1+\frac{1}{4}\right)
= \frac{1}{4}\Gamma\left(\frac{5}{4}\right)

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :


Please write to us at to report any issue with the above content.