Function to check if a singly linked list is palindrome

 

Given a singly linked list of characters, write a function that returns true if the given list is a palindrome, else false.

Palindrome Linked List

 

METHOD 1 (Use a Stack) 

  • A simple solution is to use a stack of list nodes. This mainly involves three steps.
  • Traverse the given list from head to tail and push every visited node to stack.
  • Traverse the list again. For every visited node, pop a node from stack and compare data of popped node with currently visited node.
  • If all nodes matched, then return true, else false.

Below image is a dry run of the above approach: 



Below is the implementation of the above approach : 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include<bits/stdc++.h>
using namespace std;
 
class Node {
public:
        int data;
        Node(int d){
            data = d;
        }
        Node *ptr;
};
 
// Function to check if the linked list
// is palindrome or not
bool isPalin(Node* head){
         
        // Temp pointer
        Node* slow= head;
 
        // Declare a stack
        stack <int> s;
  
 
        // Push all elements of the list
        // to the stack
        while(slow != NULL){
                s.push(slow->data);
 
                // Move ahead
                slow = slow->ptr;
        }
 
        // Iterate in the list again and
        // check by popping from the stack
        while(head != NULL ){
             
            // Get the top most element
             int i=s.top();
 
             // Pop the element
             s.pop();
 
             // Check if data is not
             // same as popped element
            if(head -> data != i){
                return false;
            }
 
            // Move ahead
           head=head->ptr;
        }
 
return true;
}
 
// Driver Code
int main(){
 
    // Addition of linked list
    Node one =  Node(1);
    Node two = Node(2);
    Node three = Node(3);
    Node four = Node(2);
    Node five = Node(1);
 
    // Initialize the next pointer
    // of every current pointer
    five.ptr = NULL;
    one.ptr = &two;
    two.ptr = &three;
    three.ptr = &four;
    four.ptr = &five;
    Node* temp = &one;
 
     
    // Call function to check palindrome or not
    int result = isPalin(&one);
   
    if(result == 1)
            cout<<"isPalindrome is true\n";
    else
        cout<<"isPalindrome is true\n";
 
return 0;
}
 
// This code has been contributed by Striver

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Java program to check if linked list is palindrome recursively */
import java.util.*;
 
class linkeList {
    public static void main(String args[])
    {
        Node one = new Node(1);
        Node two = new Node(2);
        Node three = new Node(3);
        Node four = new Node(4);
        Node five = new Node(3);
        Node six = new Node(2);
        Node seven = new Node(1);
        one.ptr = two;
        two.ptr = three;
        three.ptr = four;
        four.ptr = five;
        five.ptr = six;
        six.ptr = seven;
        boolean condition = isPalindrome(one);
        System.out.println("isPalidrome :" + condition);
    }
    static boolean isPalindrome(Node head)
    {
 
        Node slow = head;
        boolean ispalin = true;
        Stack<Integer> stack = new Stack<Integer>();
 
        while (slow != null) {
            stack.push(slow.data);
            slow = slow.ptr;
        }
 
        while (head != null) {
 
            int i = stack.pop();
            if (head.data == i) {
                ispalin = true;
            }
            else {
                ispalin = false;
                break;
            }
            head = head.ptr;
        }
        return ispalin;
    }
}
 
class Node {
    int data;
    Node ptr;
    Node(int d)
    {
        ptr = null;
        data = d;
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if linked
# list is palindrome using stack
class Node:
    def __init__(self,data):
         
        self.data = data
        self.ptr = None
         
# Function to check if the linked list
# is palindrome or not
def ispalindrome(head):
     
    # Temp pointer
    slow = head
 
    # Declare a stack
    stack = []
     
    ispalin = True
 
    # Push all elements of the list
    # to the stack
    while slow != None:
        stack.append(slow.data)
         
        # Move ahead
        slow = slow.ptr
 
    # Iterate in the list again and
    # check by popping from the stack
    while head != None:
 
        # Get the top most element
        i = stack.pop()
         
        # Check if data is not
        # same as popped element
        if head.data == i:
            ispalin = True
        else:
            ispalin = False
            break
 
        # Move ahead
        head = head.ptr
         
    return ispalin
 
# Driver Code
 
# Addition of linked list
one = Node(1)
two = Node(2)
three = Node(3)
four = Node(4)
five = Node(3)
six = Node(2)
seven = Node(1)
 
# Initialize the next pointer
# of every current pointer
one.ptr = two
two.ptr = three
three.ptr = four
four.ptr = five
five.ptr = six
six.ptr = seven
seven.ptr = None
 
# Call function to check palindrome or not
result = ispalindrome(one)
 
print("isPalindrome:", result)
 
# This code is contributed by Nishtha Goel

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if linked list
// is palindrome recursively
using System;
using System.Collections.Generic;
 
class linkeList{
     
// Driver code
public static void Main(String []args)
{
    Node one = new Node(1);
    Node two = new Node(2);
    Node three = new Node(3);
    Node four = new Node(4);
    Node five = new Node(3);
    Node six = new Node(2);
    Node seven = new Node(1);
     
    one.ptr = two;
    two.ptr = three;
    three.ptr = four;
    four.ptr = five;
    five.ptr = six;
    six.ptr = seven;
     
    bool condition = isPalindrome(one);
    Console.WriteLine("isPalidrome :" + condition);
}
 
static bool isPalindrome(Node head)
{
    Node slow = head;
    bool ispalin = true;
    Stack<int> stack = new Stack<int>();
 
    while (slow != null)
    {
        stack.Push(slow.data);
        slow = slow.ptr;
    }
 
    while (head != null)
    {
        int i = stack.Pop();
        if (head.data == i)
        {
            ispalin = true;
        }
        else
        {
            ispalin = false;
            break;
        }
        head = head.ptr;
    }
    return ispalin;
}
}
 
class Node
{
    public int data;
    public Node ptr;
    public Node(int d)
    {
        ptr = null;
        data = d;
    }
}
 
// This code is contributed by amal kumar choubey

chevron_right


Output 

 isPalindrome: true

The time complexity of the above method is O(n).

METHOD 2 (By reversing the list) 
This method takes O(n) time and O(1) extra space. 
1) Get the middle of the linked list. 
2) Reverse the second half of the linked list. 
3) Check if the first half and second half are identical. 
4) Construct the original linked list by reversing the second half again and attaching it back to the first half

To divide the list in two halves, method 2 of this post is used. 

When number of nodes are even, the first and second half contain exactly half nodes. The challenging thing in this method is to handle the case when number of nodes are odd. We don’t want the middle node as part of any of the lists as we are going to compare them for equality. For odd case, we use a separate variable ‘midnode’. 

C

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Program to check if a linked list is palindrome */
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
 
/* Link list node */
struct Node {
    char data;
    struct Node* next;
};
 
void reverse(struct Node**);
bool compareLists(struct Node*, struct Node*);
 
/* Function to check if given linked list is
palindrome or not */
bool isPalindrome(struct Node* head)
{
    struct Node *slow_ptr = head, *fast_ptr = head;
    struct Node *second_half, *prev_of_slow_ptr = head;
    struct Node* midnode = NULL; // To handle odd size list
    bool res = true; // initialize result
 
    if (head != NULL && head->next != NULL) {
        /* Get the middle of the list. Move slow_ptr by 1
        and fast_ptrr by 2, slow_ptr will have the middle
        node */
        while (fast_ptr != NULL && fast_ptr->next != NULL) {
            fast_ptr = fast_ptr->next->next;
 
            /*We need previous of the slow_ptr for
            linked lists with odd elements */
            prev_of_slow_ptr = slow_ptr;
            slow_ptr = slow_ptr->next;
        }
 
        /* fast_ptr would become NULL when there are even elements in list.
        And not NULL for odd elements. We need to skip the middle node
        for odd case and store it somewhere so that we can restore the
        original list*/
        if (fast_ptr != NULL) {
            midnode = slow_ptr;
            slow_ptr = slow_ptr->next;
        }
 
        // Now reverse the second half and compare it with first half
        second_half = slow_ptr;
        prev_of_slow_ptr->next = NULL; // NULL terminate first half
        reverse(&second_half); // Reverse the second half
        res = compareLists(head, second_half); // compare
 
        /* Construct the original list back */
        reverse(&second_half); // Reverse the second half again
 
        // If there was a mid node (odd size case) which
        // was not part of either first half or second half.
        if (midnode != NULL) {
            prev_of_slow_ptr->next = midnode;
            midnode->next = second_half;
        }
        else
            prev_of_slow_ptr->next = second_half;
    }
    return res;
}
 
/* Function to reverse the linked list Note that this
    function may change the head */
void reverse(struct Node** head_ref)
{
    struct Node* prev = NULL;
    struct Node* current = *head_ref;
    struct Node* next;
    while (current != NULL) {
        next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    }
    *head_ref = prev;
}
 
/* Function to check if two input lists have same data*/
bool compareLists(struct Node* head1, struct Node* head2)
{
    struct Node* temp1 = head1;
    struct Node* temp2 = head2;
 
    while (temp1 && temp2) {
        if (temp1->data == temp2->data) {
            temp1 = temp1->next;
            temp2 = temp2->next;
        }
        else
            return 0;
    }
 
    /* Both are empty reurn 1*/
    if (temp1 == NULL && temp2 == NULL)
        return 1;
 
    /* Will reach here when one is NULL
    and other is not */
    return 0;
}
 
/* Push a node to linked list. Note that this function
changes the head */
void push(struct Node** head_ref, char new_data)
{
    /* allocate node */
    struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* move the head to pochar to the new node */
    (*head_ref) = new_node;
}
 
// A utility function to print a given linked list
void printList(struct node* ptr)
{
    while (ptr != NULL) {
        printf("%c->", ptr->data);
        ptr = ptr->next;
    }
    printf("NULL\n");
}
 
/* Drier program to test above function*/
int main()
{
    /* Start with the empty list */
    struct Node* head = NULL;
    char str[] = "abacaba";
    int i;
 
    for (i = 0; str[i] != '\0'; i++) {
        push(&head, str[i]);
        printList(head);
        isPalindrome(head) ? printf("Is Palindrome\n\n") : printf("Not Palindrome\n\n");
    }
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Java program to check if linked list is palindrome */
 
class LinkedList {
    Node head; // head of list
    Node slow_ptr, fast_ptr, second_half;
 
    /* Linked list Node*/
    class Node {
        char data;
        Node next;
 
        Node(char d)
        {
            data = d;
            next = null;
        }
    }
 
    /* Function to check if given linked list is
       palindrome or not */
    boolean isPalindrome(Node head)
    {
        slow_ptr = head;
        fast_ptr = head;
        Node prev_of_slow_ptr = head;
        Node midnode = null; // To handle odd size list
        boolean res = true; // initialize result
 
        if (head != null && head.next != null) {
            /* Get the middle of the list. Move slow_ptr by 1
               and fast_ptrr by 2, slow_ptr will have the middle
               node */
            while (fast_ptr != null && fast_ptr.next != null) {
                fast_ptr = fast_ptr.next.next;
 
                /*We need previous of the slow_ptr for
                  linked lists  with odd elements */
                prev_of_slow_ptr = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            /* fast_ptr would become NULL when there are even elements
               in the list and not NULL for odd elements. We need to skip 
               the middle node for odd case and store it somewhere so that
               we can restore the original list */
            if (fast_ptr != null) {
                midnode = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            // Now reverse the second half and compare it with first half
            second_half = slow_ptr;
            prev_of_slow_ptr.next = null; // NULL terminate first half
            reverse(); // Reverse the second half
            res = compareLists(head, second_half); // compare
 
            /* Construct the original list back */
            reverse(); // Reverse the second half again
 
            if (midnode != null) {
                // If there was a mid node (odd size case) which
                // was not part of either first half or second half.
                prev_of_slow_ptr.next = midnode;
                midnode.next = second_half;
            }
            else
                prev_of_slow_ptr.next = second_half;
        }
        return res;
    }
 
    /* Function to reverse the linked list  Note that this
       function may change the head */
    void reverse()
    {
        Node prev = null;
        Node current = second_half;
        Node next;
        while (current != null) {
            next = current.next;
            current.next = prev;
            prev = current;
            current = next;
        }
        second_half = prev;
    }
 
    /* Function to check if two input lists have same data*/
    boolean compareLists(Node head1, Node head2)
    {
        Node temp1 = head1;
        Node temp2 = head2;
 
        while (temp1 != null && temp2 != null) {
            if (temp1.data == temp2.data) {
                temp1 = temp1.next;
                temp2 = temp2.next;
            }
            else
                return false;
        }
 
        /* Both are empty reurn 1*/
        if (temp1 == null && temp2 == null)
            return true;
 
        /* Will reach here when one is NULL
           and other is not */
        return false;
    }
 
    /* Push a node to linked list. Note that this function
       changes the head */
    public void push(char new_data)
    {
        /* Allocate the Node &
           Put in the data */
        Node new_node = new Node(new_data);
 
        /* link the old list off the new one */
        new_node.next = head;
 
        /* Move the head to point to new Node */
        head = new_node;
    }
 
    // A utility function to print a given linked list
    void printList(Node ptr)
    {
        while (ptr != null) {
            System.out.print(ptr.data + "->");
            ptr = ptr.next;
        }
        System.out.println("NULL");
    }
 
    /* Driver program to test the above functions */
    public static void main(String[] args)
    {
 
        /* Start with the empty list */
        LinkedList llist = new LinkedList();
 
        char str[] = { 'a', 'b', 'a', 'c', 'a', 'b', 'a' };
        String string = new String(str);
        for (int i = 0; i < 7; i++) {
            llist.push(str[i]);
            llist.printList(llist.head);
            if (llist.isPalindrome(llist.head) != false) {
                System.out.println("Is Palindrome");
                System.out.println("");
            }
            else {
                System.out.println("Not Palindrome");
                System.out.println("");
            }
        }
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if
# linked list is palindrome
 
# Node class
class Node:
 
    # Constructor to initialize
    # the node object
    def __init__(self, data):
         
        self.data = data
        self.next = None
 
class LinkedList:
 
    # Function to initialize head
    def __init__(self):
         
        self.head = None
 
    # Function to check if given
    # linked list is pallindrome or not
    def isPalindrome(self, head):
         
        slow_ptr = head
        fast_ptr = head
        prev_of_slow_ptr = head
         
        # To handle odd size list
        midnode = None
         
        # Initialize result
        res = True 
         
        if (head != None and head.next != None):
             
            # Get the middle of the list.
            # Move slow_ptr by 1 and
            # fast_ptrr by 2, slow_ptr
            # will have the middle node
            while (fast_ptr != None and
                   fast_ptr.next != None):
                       
                # We need previous of the slow_ptr
                # for linked lists  with odd
                # elements
                fast_ptr = fast_ptr.next.next
                prev_of_slow_ptr = slow_ptr
                slow_ptr = slow_ptr.next
                 
            # fast_ptr would become NULL when
            # there are even elements in the
            # list and not NULL for odd elements.
            # We need to skip the middle node for
            # odd case and store it somewhere so
            # that we can restore the original list
            if (fast_ptr != None):
                midnode = slow_ptr
                slow_ptr = slow_ptr.next
                 
            # Now reverse the second half
            # and compare it with first half
            second_half = slow_ptr
             
            # NULL terminate first half
            prev_of_slow_ptr.next = None
             
            # Reverse the second half
            second_half = self.reverse(second_half)
             
            # Compare
            res = self.compareLists(head, second_half) 
             
            # Construct the original list back
            # Reverse the second half again
            second_half = self.reverse(second_half)
             
            if (midnode != None):
                 
                # If there was a mid node (odd size
                # case) which was not part of either
                # first half or second half.
                prev_of_slow_ptr.next = midnode
                midnode.next = second_half
            else:
                prev_of_slow_ptr.next = second_half
        return res
     
    # Function to reverse the linked list
    # Note that this function may change
    # the head
    def reverse(self, second_half):
         
        prev = None
        current = second_half
        next = None
         
        while current != None:
            next = current.next
            current.next = prev
            prev = current
            current = next
             
        second_half = prev
        return second_half
 
    # Function to check if two input
    # lists have same data
    def compareLists(self, head1, head2):
         
        temp1 = head1
        temp2 = head2
         
        while (temp1 and temp2):
            if (temp1.data == temp2.data):
                temp1 = temp1.next
                temp2 = temp2.next
            else:
                return 0
                 
        # Both are empty return 1
        if (temp1 == None and temp2 == None):
            return 1
             
        # Will reach here when one is NULL
        # and other is not
        return 0
     
    # Function to insert a new node
    # at the beginning
    def push(self, new_data):
         
        # Allocate the Node &
        # Put in the data
        new_node = Node(new_data)
         
        # Link the old list off the new one
        new_node.next = self.head
         
        # Move the head to point to new Node
        self.head = new_node
 
    # A utility function to print
    # a given linked list
    def printList(self):
         
        temp = self.head
         
        while(temp):
            print(temp.data, end = "->")
            temp = temp.next
             
        print("NULL")
 
# Driver code
if __name__ == '__main__':
     
    l = LinkedList()
    s = [ 'a', 'b', 'a', 'c', 'a', 'b', 'a' ]
     
    for i in range(7):
        l.push(s[i])
        l.printList()
         
        if (l.isPalindrome(l.head) != False):
            print("Is Palindrome\n")
        else:
            print("Not Palindrome\n")
        print()
 
# This code is contributed by MuskanKalra1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C# program to check if linked list is palindrome */
using System;
class LinkedList {
    Node head; // head of list
    Node slow_ptr, fast_ptr, second_half;
 
    /* Linked list Node*/
    public class Node {
        public char data;
        public Node next;
 
        public Node(char d)
        {
            data = d;
            next = null;
        }
    }
 
    /* Function to check if given linked list is
       palindrome or not */
    Boolean isPalindrome(Node head)
    {
        slow_ptr = head;
        fast_ptr = head;
        Node prev_of_slow_ptr = head;
        Node midnode = null; // To handle odd size list
        Boolean res = true; // initialize result
 
        if (head != null && head.next != null) {
            /* Get the middle of the list. Move slow_ptr by 1
               and fast_ptrr by 2, slow_ptr will have the middle
               node */
            while (fast_ptr != null && fast_ptr.next != null) {
                fast_ptr = fast_ptr.next.next;
 
                /*We need previous of the slow_ptr for
                  linked lists  with odd elements */
                prev_of_slow_ptr = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            /* fast_ptr would become NULL when there are even elements
               in the list and not NULL for odd elements. We need to skip 
               the middle node for odd case and store it somewhere so that
               we can restore the original list */
            if (fast_ptr != null) {
                midnode = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            // Now reverse the second half and compare it with first half
            second_half = slow_ptr;
            prev_of_slow_ptr.next = null; // NULL terminate first half
            reverse(); // Reverse the second half
            res = compareLists(head, second_half); // compare
 
            /* Construct the original list back */
            reverse(); // Reverse the second half again
 
            if (midnode != null) {
                // If there was a mid node (odd size case) which
                // was not part of either first half or second half.
                prev_of_slow_ptr.next = midnode;
                midnode.next = second_half;
            }
            else
                prev_of_slow_ptr.next = second_half;
        }
        return res;
    }
 
    /* Function to reverse the linked list  Note that this
       function may change the head */
    void reverse()
    {
        Node prev = null;
        Node current = second_half;
        Node next;
        while (current != null) {
            next = current.next;
            current.next = prev;
            prev = current;
            current = next;
        }
        second_half = prev;
    }
 
    /* Function to check if two input lists have same data*/
    Boolean compareLists(Node head1, Node head2)
    {
        Node temp1 = head1;
        Node temp2 = head2;
 
        while (temp1 != null && temp2 != null) {
            if (temp1.data == temp2.data) {
                temp1 = temp1.next;
                temp2 = temp2.next;
            }
            else
                return false;
        }
 
        /* Both are empty reurn 1*/
        if (temp1 == null && temp2 == null)
            return true;
 
        /* Will reach here when one is NULL
           and other is not */
        return false;
    }
 
    /* Push a node to linked list. Note that this function
       changes the head */
    public void push(char new_data)
    {
        /* Allocate the Node &
           Put in the data */
        Node new_node = new Node(new_data);
 
        /* link the old list off the new one */
        new_node.next = head;
 
        /* Move the head to point to new Node */
        head = new_node;
    }
 
    // A utility function to print a given linked list
    void printList(Node ptr)
    {
        while (ptr != null) {
            Console.Write(ptr.data + "->");
            ptr = ptr.next;
        }
        Console.WriteLine("NULL");
    }
 
    /* Driver program to test the above functions */
    public static void Main(String[] args)
    {
 
        /* Start with the empty list */
        LinkedList llist = new LinkedList();
 
        char[] str = { 'a', 'b', 'a', 'c', 'a', 'b', 'a' };
 
        for (int i = 0; i < 7; i++) {
            llist.push(str[i]);
            llist.printList(llist.head);
            if (llist.isPalindrome(llist.head) != false) {
                Console.WriteLine("Is Palindrome");
                Console.WriteLine("");
            }
            else {
                Console.WriteLine("Not Palindrome");
                Console.WriteLine("");
            }
        }
    }
}
// This code is contributed by Arnab Kundu

chevron_right


Output: 

a->NULL
Is Palindrome

b->a->NULL
Not Palindrome

a->b->a->NULL
Is Palindrome

c->a->b->a->NULL
Not Palindrome

a->c->a->b->a->NULL
Not Palindrome

b->a->c->a->b->a->NULL
Not Palindrome

a->b->a->c->a->b->a->NULL
Is Palindrome

Time Complexity: O(n) 
Auxiliary Space: O(1)  



 

METHOD 3 (Using Recursion) 
Use two pointers left and right. Move right and left using recursion and check for following in each recursive call. 
1) Sub-list is palindrome. 
2) Value at current left and right are matching.

If both above conditions are true then return true.

The idea is to use function call stack as container. Recursively traverse till the end of list. When we return from last NULL, we will be at last node. The last node to be compared with first node of list.

In order to access first node of list, we need list head to be available in the last call of recursion. Hence we pass head also to the recursive function. If they both match we need to compare (2, n-2) nodes. Again when recursion falls back to (n-2)nd node, we need reference to 2nd node from head. We advance the head pointer in previous call, to refer to next node in the list.
However, the trick in identifying double pointer. Passing single pointer is as good as pass-by-value, and we will pass the same pointer again and again. We need to pass the address of head pointer for reflecting the changes in parent recursive calls.
Thanks to Sharad Chandra for suggesting this approach.  

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Recursive program to check if a given linked list is palindrome
#include <bits/stdc++.h>
using namespace std;
 
/* Link list node */
struct node {
    char data;
    struct node* next;
};
 
// Initial parameters to this function are &head and head
bool isPalindromeUtil(struct node** left, struct node* right)
{
    /* stop recursion when right becomes NULL */
    if (right == NULL)
        return true;
 
    /* If sub-list is not palindrome then no need to
    check for current left and right, return false */
    bool isp = isPalindromeUtil(left, right->next);
    if (isp == false)
        return false;
 
    /* Check values at current left and right */
    bool isp1 = (right->data == (*left)->data);
 
    /* Move left to next node */
    *left = (*left)->next;
 
    return isp1;
}
 
// A wrapper over isPalindromeUtil()
bool isPalindrome(struct node* head)
{
    isPalindromeUtil(&head, head);
}
 
/* Push a node to linked list. Note that this function
changes the head */
void push(struct node** head_ref, char new_data)
{
    /* allocate node */
    struct node* new_node = (struct node*)malloc(sizeof(struct node));
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* move the head to pochar to the new node */
    (*head_ref) = new_node;
}
 
// A utility function to print a given linked list
void printList(struct node* ptr)
{
    while (ptr != NULL) {
        cout << ptr->data << "->";
        ptr = ptr->next;
    }
    cout << "NULL\n" ;
}
 
/* Driver program to test above function*/
int main()
{
    /* Start with the empty list */
    struct node* head = NULL;
    char str[] = "abacaba";
    int i;
 
    for (i = 0; str[i] != '\0'; i++) {
        push(&head, str[i]);
        printList(head);
        isPalindrome(head) ? cout << "Is Palindrome\n\n" : cout << "Not Palindrome\n\n";
    }
 
    return 0;
}
//this code is contributed by shivanisinghss2110

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// Recursive program to check if a given linked list is palindrome
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
 
/* Link list node */
struct node {
    char data;
    struct node* next;
};
 
// Initial parameters to this function are &head and head
bool isPalindromeUtil(struct node** left, struct node* right)
{
    /* stop recursion when right becomes NULL */
    if (right == NULL)
        return true;
 
    /* If sub-list is not palindrome then no need to
    check for current left and right, return false */
    bool isp = isPalindromeUtil(left, right->next);
    if (isp == false)
        return false;
 
    /* Check values at current left and right */
    bool isp1 = (right->data == (*left)->data);
 
    /* Move left to next node */
    *left = (*left)->next;
 
    return isp1;
}
 
// A wrapper over isPalindromeUtil()
bool isPalindrome(struct node* head)
{
    isPalindromeUtil(&head, head);
}
 
/* Push a node to linked list. Note that this function
changes the head */
void push(struct node** head_ref, char new_data)
{
    /* allocate node */
    struct node* new_node = (struct node*)malloc(sizeof(struct node));
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* move the head to pochar to the new node */
    (*head_ref) = new_node;
}
 
// A utility function to print a given linked list
void printList(struct node* ptr)
{
    while (ptr != NULL) {
        printf("%c->", ptr->data);
        ptr = ptr->next;
    }
    printf("NULL\n");
}
 
/* Driver program to test above function*/
int main()
{
    /* Start with the empty list */
    struct node* head = NULL;
    char str[] = "abacaba";
    int i;
 
    for (i = 0; str[i] != '\0'; i++) {
        push(&head, str[i]);
        printList(head);
        isPalindrome(head) ? printf("Is Palindrome\n\n") : printf("Not Palindrome\n\n");
    }
 
    return 0;
}

chevron_right


Java


/* Java program to check if linked list is palindrome recursively */

class LinkedList {
    Node head; // head of list
    Node left;

    /* Linked list Node*/
    class Node {
        char data;
        Node next;

        Node(char d)
        {
            data = d;
            next = null;
        }
    }

    // Initial parameters to this function are &head and head
    boolean isPalindromeUtil(Node right)
    {
        left = head;

        /* stop recursion when right becomes NULL */
        if (right == null)
            return true;

        /* If sub-list is not palindrome then no need to
           check for current left and right, return false */
        boolean isp = isPalindromeUtil(right.next);
        if (isp == false)
            return false;

        /* Check values at current left and right */
        boolean isp1 = (right.data == (left).data);

        /* Move left to next node */
        left = left.next;

        return isp1;
    }

    // A wrapper over isPalindromeUtil()
    boolean isPalindrome(Node head)
    {
        boolean result = isPalindromeUtil(head);
        return result;
    }

    /* Push a node to linked list. Note that this function
       changes the head */
    public void push(char new_data)
    {
        /* Allocate the Node &
           Put in the data */
        Node new_node = new Node(new_data);

        /* link the old list off the new one */
        new_node.next = head;

        /* Move the head to point to new Node */
        head = new_node;
    }

    // A utility function to print a given linked list
    void printList(Node ptr)
    {
        while (ptr != null) {
            System.out.print(ptr.data + "->");
            ptr = ptr.next;
        }
        System.out.println("NULL");
    }

    /* Driver program to test the above functions */
    public static void main(String[] args)
    {
        /* Start with the empty list */
        LinkedList llist = new LinkedList();

        char str[] = { 'a', 'b', 'a', 'c', 'a', 'b', 'a' };
        String string = new String(str);
        for (int i = 0; i < 7; i++) {
            llist.push(str[i]);
            llist.printList(llist.head);
            if (llist.isPalindrome(llist.head) != false) {
                System.out.println("Is Palindrome");
                System.out.println("");
            }
            else {
                System.out.println("Not Palindrome");
                System.out.println("");
            }
        }
    }
}

// This code has been contributed by Mayank Jaiswal(mayank_24)

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C# program to check if linked list
is palindrome recursively */
using System;
     
public class LinkedList
{
    Node head; // head of list
    Node left;
 
    /* Linked list Node*/
    public class Node
    {
        public char data;
        public Node next;
 
        public Node(char d)
        {
            data = d;
            next = null;
        }
    }
 
    // Initial parameters to this function are &head and head
    Boolean isPalindromeUtil(Node right)
    {
        left = head;
 
        /* stop recursion when right becomes NULL */
        if (right == null)
            return true;
 
        /* If sub-list is not palindrome then no need to
        check for current left and right, return false */
        Boolean isp = isPalindromeUtil(right.next);
        if (isp == false)
            return false;
 
        /* Check values at current left and right */
        Boolean isp1 = (right.data == (left).data);
 
        /* Move left to next node */
        left = left.next;
 
        return isp1;
    }
 
    // A wrapper over isPalindromeUtil()
    Boolean isPalindrome(Node head)
    {
        Boolean result = isPalindromeUtil(head);
        return result;
    }
 
    /* Push a node to linked list. Note that this function
    changes the head */
    public void push(char new_data)
    {
        /* Allocate the Node &
        Put in the data */
        Node new_node = new Node(new_data);
 
        /* link the old list off the new one */
        new_node.next = head;
 
        /* Move the head to point to new Node */
        head = new_node;
    }
 
    // A utility function to print a given linked list
    void printList(Node ptr)
    {
        while (ptr != null)
        {
            Console.Write(ptr.data + "->");
            ptr = ptr.next;
        }
        Console.WriteLine("NULL");
    }
 
    /* Driver code */
    public static void Main(String[] args)
    {
        /* Start with the empty list */
        LinkedList llist = new LinkedList();
 
        char []str = { 'a', 'b', 'a', 'c', 'a', 'b', 'a' };
        //String string = new String(str);
        for (int i = 0; i < 7; i++) {
            llist.push(str[i]);
            llist.printList(llist.head);
            if (llist.isPalindrome(llist.head) != false)
            {
                Console.WriteLine("Is Palindrome");
                Console.WriteLine("");
            }
            else
            {
                Console.WriteLine("Not Palindrome");
                Console.WriteLine("");
            }
        }
    }
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 

a->NULL
Not Palindrome

b->a->NULL
Not Palindrome

a->b->a->NULL
Is Palindrome

c->a->b->a->NULL
Not Palindrome

a->c->a->b->a->NULL
Not Palindrome

b->a->c->a->b->a->NULL
Not Palindrome

a->b->a->c->a->b->a->NULL
Is Palindrome

Time Complexity: O(n) 
Auxiliary Space: O(n) if Function Call Stack size is considered, otherwise O(1).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up