Frequency of an integer in the given array using Divide and Conquer

Given an unsorted array arr[] and an integer K, the task is to count the occurrences of K in the given array using Divide and Conquer method.

Examples:

Input: arr[] = {1, 1, 2, 2, 2, 2, 3}, K = 1
Output: 2



Input: arr[] = {1, 1, 2, 2, 2, 2, 3}, K = 4
Output: 0

Approach: The idea is to divide the array into two parts of equal sizes and count the number of occurrences of K in each half and then add them up.

  • Divide the array into two parts until there is only one element left in the array.
  • Check that single element in the array is K or not, If it is K then return 1 otherwise 0.
  • Add up the returned values for each of the element to find the occurence of K in the whole array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implrmrntation of the approach
  
#include <iostream>
using namespace std;
  
// Function to return the frequency of x
// in the subarray arr[low...high]
int count(int arr[], int low, int high, int x)
{
  
    // If the subarray is invalid or the
    // element is not found
    if ((low > high)
        || (low == high && arr[low] != x))
        return 0;
  
    // If there's only a single element
    // which is equal to x
    if (low == high && arr[low] == x)
        return 1;
  
    // Divide the array into two parts and
    // then find the count of occurrences
    // of x in both the parts
    return count(arr, low,
                 (low + high) / 2, x)
           + count(arr, 1 + (low + high) / 2,
                   high, x);
}
  
// Driver code
int main()
{
    int arr[] = { 30, 1, 42, 5, 56, 3, 56, 9 };
    int n = sizeof(arr) / sizeof(int);
    int x = 56;
  
    cout << count(arr, 0, n - 1, x);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implrmrntation of the approach
  
class GFG {
  
    // Function to return the frequency of x
    // in the subarray arr[low...high]
    static int count(int arr[], int low,
                     int high, int x)
    {
  
        // If the subarray is invalid or the
        // element is not found
        if ((low > high)
            || (low == high && arr[low] != x))
            return 0;
  
        // If there's only a single element
        // which is equal to x
        if (low == high && arr[low] == x)
            return 1;
  
        // Divide the array into two parts and
        // then find the count of occurrences
        // of x in both the parts
        return count(arr, low,
                     (low + high) / 2, x)
            + count(arr, 1 + (low + high) / 2,
                    high, x);
    }
  
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 30, 1, 42, 5, 56, 3, 56, 9 };
        int n = arr.length;
        int x = 56;
        System.out.print(count(arr, 0, n - 1, x));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implrmrntation of the approach
  
# Function to return the frequency of x
# in the subarray arr[low...high]
def count(arr, low, high, x):
  
    # If the subarray is invalid or the
    # element is not found
    if ((low > high) or (low == high and arr[low] != x)):
        return 0;
  
    # If there's only a single element
    # which is equal to x
    if (low == high and arr[low] == x):
        return 1;
  
    # Divide the array into two parts and
    # then find the count of occurrences
    # of x in both the parts
    return count(arr, low, (low + high) // 2, x) +\
    count(arr, 1 + (low + high) // 2, high, x);
  
# Driver code
if __name__ == '__main__':
    arr = [ 30, 1, 42, 5, 56, 3, 56, 9];
    n = len(arr);
    x = 56;
    print(count(arr, 0, n - 1, x));
  
# This code is contributed by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implrmrntation of the approach 
using System;
  
class GFG
  
    // Function to return the frequency of x 
    // in the subarray arr[low...high] 
    static int count(int []arr, int low, 
                    int high, int x) 
    
  
        // If the subarray is invalid or the 
        // element is not found 
        if ((low > high) 
            || (low == high && arr[low] != x)) 
            return 0; 
  
        // If there's only a single element 
        // which is equal to x 
        if (low == high && arr[low] == x) 
            return 1; 
  
        // Divide the array into two parts and 
        // then find the count of occurrences 
        // of x in both the parts 
        return count(arr, low, 
                    (low + high) / 2, x) 
            + count(arr, 1 + (low + high) / 2, 
                    high, x); 
    
  
    // Driver code 
    public static void Main() 
    
        int []arr = { 30, 1, 42, 5, 56, 3, 56, 9 }; 
        int n = arr.Length; 
        int x = 56; 
        Console.Write(count(arr, 0, n - 1, x)); 
    
  
// This code is contributed by AnkitRai01

chevron_right


Output:

2

Time Complexity: O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, princiraj1992