Fraction

A fraction is a ratio of two values. Fractions have the form a/b where a is called the numerator, b is called the denominator and b cannot equal 0 (since division by 0 is undefined).The denominator gives how many equal parts are there. The numerator represents how many of these are taken. For example, one-half, eight-fifths, three-quarters (1/2, 8/5, 3/4).

Fact about Fraction :

  1. Fractions can be reduced if the numerator and denominator have a greatest common divisor(gcd) greater than 1.
  2. Addition and Subtraction of Fractions : When adding or subtracting fractions, they must have the same denominator. If they do not have the same denomimator, we must find a common one for both. To do this, we first need to find the lowest common multiple(lcm) of the two denominators or multiply each fraction by the proper integers so that there will be the same denominator.
  3. Multiplication and Division of Fractions : When multiplying two fractions, simply multiply the two numerators and multiply the two denominators.When dividing two fractions, the first fraction must be multiplied by the reciprocal of the second fraction.
  4. There are three types of fractions :
    • Proper Fractions:The numerator is less than the denominator. For Example, 1/3, 3/4, 2/7
    • Improper Fractions:The numerator is greater than (or equal to) the denominator. For Example, 4/3, 11/4, 7/7.
    • Mixed Fractions: A whole number and proper fraction together. For Example, 1 1/3, 2 1/4, 16 2/5.

How to add two fraction ?
Add two fraction a/b and c/d and print answer in simplest form.

Examples :

Input:  1/2 + 3/2
Output: 2/1

Input:  1/3 + 3/9
Output: 2/3

Input:  1/5 + 3/15
Output: 2/5

Algorithm to add two fractions



  • Find a common denominator by finding the LCM (Least Common Multiple) of the two denominators.
  • Change the fractions to have the same denominator and add both terms.
  • Reduce the final fraction obtained into its simpler form by dividing both numerator and denominator by there largest common factor.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to add 2 fractions
#include <bits/stdc++.h>
using namespace std;
  
// Function to return gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Function to convert the obtained fraction
// into it's simplest form
void lowest(int& den3, int& num3)
{
    // Finding gcd of both terms
    int common_factor = gcd(num3, den3);
  
    // Converting both terms into simpler
    // terms by dividing them by common factor
    den3 = den3 / common_factor;
    num3 = num3 / common_factor;
}
  
// Function to add two fractions
void addFraction(int num1, int den1, int num2,
                 int den2, int& num3, int& den3)
{
    // Finding gcd of den1 and den2
    den3 = gcd(den1, den2);
  
    // Denominator of final fraction obtained
    // finding LCM of den1 and den2
    // LCM * GCD = a * b
    den3 = (den1 * den2) / den3;
  
    // Changing the fractions to have same denominator
    // Numerator of the final fraction obtained
    num3 = (num1) * (den3 / den1) + (num2) * (den3 / den2);
  
    // Calling function to convert final fraction
    // into it's simplest form
    lowest(den3, num3);
}
  
// Driver program
int main()
{
    int num1 = 1, den1 = 500, num2 = 2, den2 = 1500, den3, num3;
  
    addFraction(num1, den1, num2, den2, num3, den3);
  
    printf("%d/%d + %d/%d is equal to %d/%d\n", num1, den1,
           num2, den2, num3, den3);
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to add 2 fractions 
  
# Function to return gcd of a and b 
def gcd(a, b):
    if (a == 0): 
        return
    return gcd(b % a, a) 
  
# Function to convert the obtained 
# fraction into it's simplest form 
def lowest(den3, num3): 
  
    # Finding gcd of both terms 
    common_factor = gcd(num3, den3) 
  
    # Converting both terms 
    # into simpler terms by 
    # dividing them by common factor 
    den3 = int(den3 / common_factor) 
    num3 = int(num3 / common_factor)
    print(num3, "/", den3)
  
# Function to add two fractions 
def addFraction(num1, den1, num2, den2): 
  
    # Finding gcd of den1 and den2 
    den3 = gcd(den1, den2) 
  
    # Denominator of final 
    # fraction obtained finding 
    # LCM of den1 and den2 
    # LCM * GCD = a * b 
    den3 = (den1 * den2) / den3 
  
    # Changing the fractions to 
    # have same denominator Numerator 
    # of the final fraction obtained 
    num3 = ((num1) * (den3 / den1) +
            (num2) * (den3 / den2)) 
  
    # Calling function to convert 
    # final fraction into it's 
    # simplest form 
    lowest(den3, num3)
  
# Driver Code 
num1 = 1; den1 = 500
num2 = 2; den2 = 1500
  
print(num1, "/", den1, " + ", num2, "/"
    den2, " is equal to ", end = "")
      
addFraction(num1, den1, num2, den2)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to add
// 2 fractions
  
// Function to return 
// gcd of a and b
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
  
// Function to convert the 
// obtained fraction into 
// it's simplest form
function lowest(&$den3, &$num3)
{
    // Finding gcd of both terms
    $common_factor = gcd($num3, $den3);
  
    // Converting both terms  
    // into simpler terms by 
    // dividing them by common factor 
      
    $den3 = (int)$den3 / $common_factor;
    $num3 = (int) $num3 / $common_factor;
}
  
// Function to add
// two fractions
function addFraction($num1, $den1, $num2
                     $den2, &$num3, &$den3)
{
    // Finding gcd of den1 and den2
    $den3 = gcd($den1, $den2);
  
    // Denominator of final 
    // fraction obtained finding 
    // LCM of den1 and den2
    // LCM * GCD = a * b 
    $den3 = ($den1 * $den2) / $den3;
  
    // Changing the fractions to 
    // have same denominator Numerator
    // of the final fraction obtained
    $num3 = ($num1) * ($den3 / $den1) + 
            ($num2) * ($den3 / $den2);
  
    // Calling function to convert 
    // final fraction into it's 
    // simplest form
    lowest($den3, $num3);
}
  
// Driver Code
$num1 = 1; $den1 = 500; 
$num2 = 2; $den2 = 1500; 
$den3; $num3;
addFraction($num1, $den1, $num2
            $den2, $num3, $den3);
echo $num1, "/", $den1, " + "
     $num2, "/", $den2, " is equal to "
               $num3, "/", $den3, "\n";
              
  
?>

chevron_right



Output :

1/500 + 2/1500 is equal to 1/300

 
More problems related to Fraction:

Recent Articles on Fraction!



My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.