# Form smallest number using indices of numbers chosen from Array with sum less than S

Given an array arr[] and an integer S, the task is to choose maximum count of numbers from the array such that sum of numbers is less than S and form the smallest possible number using their indices

Note: Any element can be choosen any number of times.
Examples:

Input: arr[] = {3, 4, 2, 4, 6, 5, 4, 2, 3}, S = 13
Output: 133333
Explanation:
Elements chosen – 3 + 2 + 2 + 2 + 2 + 2 = 13
Therefore, Concatenation of indices – 133333

Input: arr[] = {18, 21, 22, 51, 13, 14, 17, 15, 17}, S = 50
Output: 115

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to find the maximum count of the elements that can be chosen which can be computed for the number using . Finally, the minimum indices that can be choose multiple times is computed by taking the minimum digit in the number for each digit place.

Below is the implementation of the above approach:

## C++

 // C++ implementation to find  // minimum number which  // have a maximum length     #include  using namespace std;     // Function to find the  // minimum number which  // have maximum length  string max_number(int arr[], int sum)  {      int frac;      int maxi = INT_MIN;      string ans;      int pos;         // Find Maximum length      // of number      for (int i = 0; i < 9; i++) {          frac[i] = sum / arr[i];          if (frac[i] > maxi) {              pos = i;              maxi = frac[i];          }      }         ans.insert(0,                 string(maxi,                        (pos + 1) + '0'));      sum -= maxi * arr[pos];         // Find minimum number WHich      // have maximum length      for (int i = 0; i < maxi; i++) {          for (int j = 1; j <= 9; j++) {                 if (sum                      + arr[pos]                      - arr[j - 1]                  >= 0) {                     ans[i] = (j + '0');                  sum += arr[pos]                         - arr[j - 1];                  break;              }          }      }         if (maxi == 0) {          return 0;      }      else {          return ans;      }  }     // Driver Code  int main()  {      int arr = { 3, 4, 2, 4, 6,                     5, 4, 2, 3 };      int s = 13;      cout << max_number(arr, s);      return 0;  }

## Java

 // Java implementation to find  // minimum number which  // have a maximum length  class GFG{     // Function to find the  // minimum number which  // have maximum length  static String max_number(int arr[], int sum)   {      int frac[] = new int;      int maxi = Integer.MIN_VALUE;             StringBuilder ans = new StringBuilder();      int pos = 0;         // Find Maximum length      // of number      for(int i = 0; i < 9; i++)      {          frac[i] = sum / arr[i];          if (frac[i] > maxi)          {              pos = i;              maxi = frac[i];          }      }         for(int i = 0; i < maxi; i++)      {          ans.append((char)((pos + 1) + '0'));      }         sum -= maxi * arr[pos];         // Find minimum number WHich      // have maximum length      for(int i = 0; i < maxi; i++)      {          for(int j = 1; j <= 9; j++)          {              if (sum + arr[pos] - arr[j - 1] >= 0)              {                  ans.setCharAt(i, (char)(j + '0'));                             sum += arr[pos] - arr[j - 1];                  break;              }          }      }             if (maxi == 0)      {          return "0";      }       else     {          return ans.toString();      }  }     // Driver Code  public static void main(String str[])   {      int arr[] = { 3, 4, 2, 4, 6,                    5, 4, 2, 3 };      int s = 13;             System.out.println(max_number(arr, s));  }  }     // This code is contributed by rutvik_56

Output:

133333


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : rutvik_56, Akanksha_Rai

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.