Given a binary tree, the task is to flatten it in order of its post-order traversal. In the flattened binary tree, the left node of all the nodes must be NULL.
Examples:
Input:
5
/ \
3 7
/ \ / \
2 4 6 8
Output: 2 4 3 6 8 7 5
Input:
1
\
2
\
3
\
4
\
5
Output: 5 4 3 2 1
A simple approach will be to recreate the Binary Tree from its post-order traversal. This will take O(N) extra space were N is the number of nodes in BST.
A better solution is to simulate post-order traversal of the given binary tree.
- Create a dummy node.
- Create variable called ‘prev’ and make it point to the dummy node.
- Perform post-order traversal and at each step.
- Set prev -> right = curr
- Set prev -> left = NULL
- Set prev = curr
This will improve the space complexity to O(H) in the worst case as post-order traversal takes O(H) extra space.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
struct node {
int data;
node* left;
node* right;
node( int data)
{
this ->data = data;
left = NULL;
right = NULL;
}
};
void print(node* parent)
{
node* curr = parent;
while (curr != NULL)
cout << curr->data << " " , curr = curr->right;
}
void postorder(node* curr, node*& prev)
{
if (curr == NULL)
return ;
postorder(curr->left, prev);
postorder(curr->right, prev);
prev->left = NULL;
prev->right = curr;
prev = curr;
}
node* flatten(node* parent)
{
node* dummy = new node(-1);
node* prev = dummy;
postorder(parent, prev);
prev->left = NULL;
prev->right = NULL;
node* ret = dummy->right;
delete dummy;
return ret;
}
int main()
{
node* root = new node(5);
root->left = new node(3);
root->right = new node(7);
root->left->left = new node(2);
root->left->right = new node(4);
root->right->left = new node(6);
root->right->right = new node(8);
print(flatten(root));
return 0;
}
|
Java
class GFG
{
static class node
{
int data;
node left;
node right;
node( int data)
{
this .data = data;
left = null ;
right = null ;
}
};
static node prev;
static void print(node parent)
{
node curr = parent;
while (curr != null )
{
System.out.print(curr.data + " " );
curr = curr.right;
}
}
static void postorder(node curr)
{
if (curr == null )
return ;
postorder(curr.left);
postorder(curr.right);
prev.left = null ;
prev.right = curr;
prev = curr;
}
static node flatten(node parent)
{
node dummy = new node(- 1 );
prev = dummy;
postorder(parent);
prev.left = null ;
prev.right = null ;
node ret = dummy.right;
dummy = null ;
return ret;
}
public static void main(String[] args)
{
node root = new node( 5 );
root.left = new node( 3 );
root.right = new node( 7 );
root.left.left = new node( 2 );
root.left.right = new node( 4 );
root.right.left = new node( 6 );
root.right.right = new node( 8 );
print(flatten(root));
}
}
|
Python3
class node:
def __init__( self , key):
self .data = key
self .left = self .right = None
def print_(parent):
curr = parent
while (curr ! = None ):
print ( curr.data ,end = " " )
curr = curr.right
prev = None
def postorder( curr ):
global prev
if (curr = = None ):
return
postorder(curr.left)
postorder(curr.right)
prev.left = None
prev.right = curr
prev = curr
def flatten(parent):
global prev
dummy = node( - 1 )
prev = dummy
postorder(parent)
prev.left = None
prev.right = None
ret = dummy.right
return ret
root = node( 5 )
root.left = node( 3 )
root.right = node( 7 )
root.left.left = node( 2 )
root.left.right = node( 4 )
root.right.left = node( 6 )
root.right.right = node( 8 )
print_(flatten(root))
|
C#
using System;
class GFG
{
public class node
{
public int data;
public node left;
public node right;
public node( int data)
{
this .data = data;
left = null ;
right = null ;
}
};
static node prev;
static void print(node parent)
{
node curr = parent;
while (curr != null )
{
Console.Write(curr.data + " " );
curr = curr.right;
}
}
static void postorder(node curr)
{
if (curr == null )
return ;
postorder(curr.left);
postorder(curr.right);
prev.left = null ;
prev.right = curr;
prev = curr;
}
static node flatten(node parent)
{
node dummy = new node(-1);
prev = dummy;
postorder(parent);
prev.left = null ;
prev.right = null ;
node ret = dummy.right;
dummy = null ;
return ret;
}
public static void Main(String[] args)
{
node root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
print(flatten(root));
}
}
|
Javascript
<script>
class node
{
constructor(data)
{
this .data = data;
this .left = null ;
this .right = null ;
}
};
var prev = null ;
function print(parent)
{
var curr = parent;
while (curr != null )
{
document.write(curr.data + " " );
curr = curr.right;
}
}
function postorder(curr)
{
if (curr == null )
return ;
postorder(curr.left);
postorder(curr.right);
prev.left = null ;
prev.right = curr;
prev = curr;
}
function flatten(parent)
{
var dummy = new node(-1);
prev = dummy;
postorder(parent);
prev.left = null ;
prev.right = null ;
var ret = dummy.right;
dummy = null ;
return ret;
}
var root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
print(flatten(root));
</script>
|
Time complexity: O(N)
Auxiliary Space: O(N). since N extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
08 Aug, 2022
Like Article
Save Article