# Flatten a binary tree into linked list | Set-3

Given a binary tree, flatten it into linked list in-place. Usage of auxiliary data structure is not allowed. After flattening, left of each node should point to NULL and right should contain next node in level order.

Examples:

```Input:
1
/   \
2     5
/ \     \
3   4     6

Output:
1
\
2
\
3
\
4
\
5
\
6

Input:
1
/ \
3   4
/
2
\
5
Output:
1
\
3
\
4
\
2
\
5```

Approach: Recurse the binary tree in Inorder Format, at every stage of function call pass on the address of last node in the flattened linked list so that current node can make itself a right node of the last node.

For left child, it’s parent node is the last node in the flattened list
For the right child there are two conditions:

• If there is no left child to the parent, parent node is the last node in the flattened list.
• If left child is not null then leaf node from left sub-tree is the last node in the flattened list.

Below is the implementation of the above approach:

## C++

 `// C++ program to flatten the binary tree` `// using previous node approach` `using` `namespace` `std;` `#include ` `#include `   `// Structure to represent a node of the tree` `struct` `Node {` `    ``int` `data;` `    ``struct` `Node* left;` `    ``struct` `Node* right;` `};`   `Node* AllocNode(``int` `data)` `{` `    ``Node* temp = ``new` `Node;` `    ``temp->left = NULL;` `    ``temp->right = NULL;` `    ``temp->data = data;` `    ``return` `temp;` `}`   `// Utility function to print the inorder` `// traversal of the tree` `void` `PrintInorderBinaryTree(Node* root)` `{` `    ``if` `(root == NULL)` `        ``return``;` `    ``PrintInorderBinaryTree(root->left);` `    ``std::cout << root->data << ``" "``;` `    ``PrintInorderBinaryTree(root->right);` `}`   `// Function to make current node right of` `// the last node in the list` `void` `FlattenBinaryTree(Node* root, Node** last)` `{` `    ``if` `(root == NULL)` `        ``return``;`   `    ``Node* left = root->left;` `    ``Node* right = root->right;`   `    ``// Avoid first iteration where root is` `    ``// the only node in the list` `    ``if` `(root != *last) {` `        ``(*last)->right = root;` `        ``(*last)->left = NULL;` `        ``*last = root;` `    ``}`   `    ``FlattenBinaryTree(left, last);` `    ``FlattenBinaryTree(right, last);` `    ``if` `(left == NULL && right == NULL)` `        ``*last = root;` `}`   `// Driver Code` `int` `main()` `{`   `    ``// Build the tree` `    ``Node* root = AllocNode(1);` `    ``root->left = AllocNode(2);` `    ``root->left->left = AllocNode(3);` `    ``root->left->right = AllocNode(4);` `    ``root->right = AllocNode(5);` `    ``root->right->right = AllocNode(6);`   `    ``// Print the inorder traversal of the` `    ``// original tree` `    ``std::cout << ``"Original inorder traversal : "``;` `    ``PrintInorderBinaryTree(root);` `    ``std::cout << std::endl;`   `    ``// Flatten a binary tree, at the beginning` `    ``// root node is the only and last in the list` `    ``Node* last = root;` `    ``FlattenBinaryTree(root, &last);`   `    ``// Print the inorder traversal of the flattened` `    ``// binary tree` `    ``std::cout << ``"Flattened inorder traversal : "``;` `    ``PrintInorderBinaryTree(root);` `    ``std::cout << std::endl;`   `    ``return` `0;` `}`

## Java

 `// Java program to flatten the binary tree` `// using previous node approach` `class` `GFG` `{` `    `  `// Structure to represent a node of the tree` `static` `class` `Node` `{` `    ``int` `data;` `    ``Node left;` `    ``Node right;` `};`   `static` `Node AllocNode(``int` `data)` `{` `    ``Node temp = ``new` `Node();` `    ``temp.left = ``null``;` `    ``temp.right = ``null``;` `    ``temp.data = data;` `    ``return` `temp;` `}`   `// Utility function to print the inorder` `// traversal of the tree` `static` `void` `PrintInorderBinaryTree(Node root)` `{` `    ``if` `(root == ``null``)` `        ``return``;` `    ``PrintInorderBinaryTree(root.left);` `    ``System.out.print( root.data + ``" "``);` `    ``PrintInorderBinaryTree(root.right);` `}`   `static` `Node last =``null``;`   `// Function to make current node right of` `// the last node in the list` `static` `void` `FlattenBinaryTree(Node root)` `{` `    ``if` `(root == ``null``)` `        ``return``;`   `    ``Node left = root.left;` `    ``Node right = root.right;`   `    ``// Avoid first iteration where root is` `    ``// the only node in the list` `    ``if` `(root != last) {` `        ``(last).right = root;` `        ``(last).left = ``null``;` `        ``last = root;` `    ``}`   `    ``FlattenBinaryTree(left);` `    ``FlattenBinaryTree(right);` `    ``if` `(left == ``null` `&& right == ``null``)` `        ``last = root;` `}`   `// Driver Code` `public` `static` `void` `main(String args[])` `{`   `    ``// Build the tree` `    ``Node root = AllocNode(``1``);` `    ``root.left = AllocNode(``2``);` `    ``root.left.left = AllocNode(``3``);` `    ``root.left.right = AllocNode(``4``);` `    ``root.right = AllocNode(``5``);` `    ``root.right.right = AllocNode(``6``);`   `    ``// Print the inorder traversal of the` `    ``// original tree` `    ``System.out.print(``"Original inorder traversal : "``);` `    ``PrintInorderBinaryTree(root);` `    ``System.out.println();`   `    ``// Flatten a binary tree, at the beginning` `    ``// root node is the only and last in the list` `    ``last = root;` `    ``FlattenBinaryTree(root);`   `    ``// Print the inorder traversal of the flattened` `    ``// binary tree` `    ``System.out.print(``"Flattened inorder traversal : "``);` `    ``PrintInorderBinaryTree(root);` `    ``System.out.println(); ` `    `  `}` `}`   `// This code is contributed by Arnab Kundu`

## Python

 `# Python program to flatten binary tree` `# using previous node approach`   `# Node class to represent a node of the tree` `class` `Node:` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.right ``=` `None` `        ``self``.left ``=` `None`   `# Utility function to print the inorder` `# traversal of the tree` `def` `PrintInorderBinaryTree(root):` `    ``if``(root ``=``=` `None``):` `        ``return` `    ``PrintInorderBinaryTree(root.left)` `    ``print``(``str``(root.data), end ``=` `" "``)` `    ``PrintInorderBinaryTree(root.right)`   `# Function to make current node right of` `# the last node in the list` `def` `FlattenBinaryTree(root):`   `    ``# A global variable which maintains the last node` `    ``# that was added to the linked list` `    ``global` `last` `    ``if``(root ``=``=` `None``):` `        ``return` `    `  `    ``left ``=` `root.left` `    ``right ``=` `root.right`   `    ``# Avoid first iteration where root is` `    ``# the only node in the list` `    ``if``(root !``=` `last):` `        ``last.right ``=` `root` `        ``last.left ``=` `None` `        ``last ``=` `root` `    ``FlattenBinaryTree(left)` `    ``FlattenBinaryTree(right)` `    ``if``(left ``=``=` `None` `and` `right ``=``=` `None``):` `        ``last ``=` `root`   `# Build the tree` `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.left.left ``=` `Node(``3``)` `root.left.right ``=` `Node(``4``)` `root.right ``=` `Node(``5``)` `root.right.right ``=` `Node(``6``)`   `# Print the inorder traversal of the` `# original tree` `print``(``"Original inorder traversal : "``, end ``=` `"")` `PrintInorderBinaryTree(root)` `print``("")`   `# Global variable to maintain the ` `# last node added to the linked list` `last ``=` `root`   `# Flatten the binary tree, at the beginning` `# root node is the only node in the list` `FlattenBinaryTree(root)`   `# Print the inorder traversal of the flattened ` `# binary tree` `print``(``"Flattened inorder traversal : "``, end ``=` `"")` `PrintInorderBinaryTree(root)`   `# This code is contributed by Pranav Devarakonda`

## C#

 `// C# program to flatten the binary tree` `// using previous node approach` `using` `System;`   `class` `GFG` `{` `    `  `// Structure to represent a node of the tree` `public` `class` `Node` `{` `    ``public` `int` `data;` `    ``public` `Node left;` `    ``public` `Node right;` `};`   `static` `Node AllocNode(``int` `data)` `{` `    ``Node temp = ``new` `Node();` `    ``temp.left = ``null``;` `    ``temp.right = ``null``;` `    ``temp.data = data;` `    ``return` `temp;` `}`   `// Utility function to print the inorder` `// traversal of the tree` `static` `void` `PrintInorderBinaryTree(Node root)` `{` `    ``if` `(root == ``null``)` `        ``return``;` `    ``PrintInorderBinaryTree(root.left);` `    ``Console.Write(root.data + ``" "``);` `    ``PrintInorderBinaryTree(root.right);` `}`   `static` `Node last =``null``;`   `// Function to make current node right of` `// the last node in the list` `static` `void` `FlattenBinaryTree(Node root)` `{` `    ``if` `(root == ``null``)` `        ``return``;`   `    ``Node left = root.left;` `    ``Node right = root.right;`   `    ``// Avoid first iteration where root is` `    ``// the only node in the list` `    ``if` `(root != last) ` `    ``{` `        ``(last).right = root;` `        ``(last).left = ``null``;` `        ``last = root;` `    ``}`   `    ``FlattenBinaryTree(left);` `    ``FlattenBinaryTree(right);` `    ``if` `(left == ``null` `&& right == ``null``)` `        ``last = root;` `}`   `// Driver Code` `public` `static` `void` `Main(String []args)` `{`   `    ``// Build the tree` `    ``Node root = AllocNode(1);` `    ``root.left = AllocNode(2);` `    ``root.left.left = AllocNode(3);` `    ``root.left.right = AllocNode(4);` `    ``root.right = AllocNode(5);` `    ``root.right.right = AllocNode(6);`   `    ``// Print the inorder traversal of the` `    ``// original tree` `    ``Console.Write(``"Original inorder traversal : "``);` `    ``PrintInorderBinaryTree(root);` `    ``Console.WriteLine();`   `    ``// Flatten a binary tree, at the beginning` `    ``// root node is the only and last in the list` `    ``last = root;` `    ``FlattenBinaryTree(root);`   `    ``// Print the inorder traversal of the flattened` `    ``// binary tree` `    ``Console.Write(``"Flattened inorder traversal : "``);` `    ``PrintInorderBinaryTree(root);` `    ``Console.WriteLine(); ` `}` `}`   `// This code is contributed by 29AjayKumar`

## Javascript

 ``

Output

```Original inorder traversal : 3 2 4 1 5 6
Flattened inorder traversal : 1 2 3 4 5 6 ```

Time Complexity: O(N) where N is the number of nodes in the binary tree.
Auxiliary Space: O(h) where h is the height of binary tree due to recursion call stack.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next