# First Fit algorithm in Memory Management using Linked List

First Fit Algorithm for Memory Management: The first memory partition which is sufficient to accommodate the process is allocated.

We have already discussed first fit algorithm using arrays in this article. However, here we are going to look into another approach using a linked list where the deletion of allocated nodes is also possible.

Examples:

```Input: blockSize[] = {100, 500, 200}
processSize[] = {417, 112, 426, 95}
Output:
Block of size 426 can't be allocated
Tag    Block ID    Size
0         1        417
1         2        112
2         0        95
After deleting block with tag id 0.
Tag    Block ID    Size
1         2        112
2         0        95
3         1        426
``` Approach: The idea is to use the memory block with a unique tag id. Each process of different sizes are given block id, which signifies to which memory block they belong to, and unique tag id to delete particular process to free up space. Create a free list of given memory block sizes and allocated list of processes.

Create allocated list:
Create an allocated list of given process sizes by finding the first memory block with sufficient size to allocate memory from. If the memory block is not found, then simply print it. Otherwise, create a node and add it to the allocated linked list.

Delete process:
Each process is given a unique tag id. Delete the process node from the allocated linked list to free up some space for other processes. After deleting, use the block id of the deleted node to increase the memory block size in the free list.

Below is the implementation of the approach:

## C/C++

 `// C++ implementation of the First ` `// sit memory management algorithm ` `// using linked list ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Two global counters ` `int` `g = 0, k = 0; ` ` `  `// Structure for free list ` `struct` `free` `{ ` `    ``int` `tag; ` `    ``int` `size; ` `    ``struct` `free``* next; ` `}* free_head = NULL, *prev_free = NULL; ` ` `  `// Structure for allocated list ` `struct` `alloc { ` `    ``int` `block_id; ` `    ``int` `tag; ` `    ``int` `size; ` `    ``struct` `alloc* next; ` `}* alloc_head = NULL, *prev_alloc = NULL; ` ` `  `// Function to create free ` `// list with given sizes ` `void` `create_free(``int` `c) ` `{ ` `    ``struct` `free``* p = (``struct` `free``*) ` `        ``malloc``(``sizeof``(``struct` `free``)); ` `    ``p->size = c; ` `    ``p->tag = g; ` `    ``p->next = NULL; ` `    ``if` `(free_head == NULL) ` `        ``free_head = p; ` `    ``else` `        ``prev_free->next = p; ` `    ``prev_free = p; ` `    ``g++; ` `} ` ` `  `// Fuction to print free list which ` `// prints free blocks of given sizes ` `void` `print_free() ` `{ ` `    ``struct` `free``* p = free_head; ` `    ``cout << ``"Tag\tSize\n"``; ` `    ``while` `(p != NULL) { ` `        ``cout << p->tag << ``"\t"` `             ``<< p->size << ``"\n"``; ` `        ``p = p->next; ` `    ``} ` `} ` ` `  `// Function to print allocated list which ` `// prints allocated blocks and their block ids ` `void` `print_alloc() ` `{ ` `    ``struct` `alloc* p = alloc_head; ` `    ``cout << ``"Tag\tBlock ID\tSize\n"``; ` `    ``while` `(p != NULL) { ` `        ``cout << p->tag << ``"\t  "` `             ``<< p->block_id << ``"\t\t"` `             ``<< p->size << ``"\n"``; ` `        ``p = p->next; ` `    ``} ` `} ` ` `  `// Function to allocate memory to ` `// blocks as per First fit algorithm ` `void` `create_alloc(``int` `c) ` `{ ` `    ``// create node for process of given size ` `    ``struct` `alloc* q = (``struct` `alloc*) ` `        ``malloc``(``sizeof``(``struct` `alloc)); ` `    ``q->size = c; ` `    ``q->tag = k; ` `    ``q->next = NULL; ` `    ``struct` `free``* p = free_head; ` ` `  `    ``// Iterate to find first memory ` `    ``// block with appropriate size ` `    ``while` `(p != NULL) { ` `        ``if` `(q->size <= p->size) ` `            ``break``; ` `        ``p = p->next; ` `    ``} ` ` `  `    ``// Node found to allocate ` `    ``if` `(p != NULL) { ` `        ``// Adding node to allocated list ` `        ``q->block_id = p->tag; ` `        ``p->size -= q->size; ` `        ``if` `(alloc_head == NULL) ` `            ``alloc_head = q; ` `        ``else` `{ ` `            ``prev_alloc = alloc_head; ` `            ``while` `(prev_alloc->next != NULL) ` `                ``prev_alloc = prev_alloc->next; ` `            ``prev_alloc->next = q; ` `        ``} ` `        ``k++; ` `    ``} ` `    ``else` `// Node found to allocate space from ` `        ``cout << ``"Block of size "` `<< c ` `             ``<< ``" can't be allocated\n"``; ` `} ` ` `  `// Function to delete node from ` `// allocated list to free some space ` `void` `delete_alloc(``int` `t) ` `{ ` `    ``// Standard delete function ` `    ``// of a linked list node ` `    ``struct` `alloc *p = alloc_head, *q = NULL; ` ` `  `    ``// First, find the node according ` `    ``// to given tag id ` `    ``while` `(p != NULL) { ` `        ``if` `(p->tag == t) ` `            ``break``; ` `        ``q = p; ` `        ``p = p->next; ` `    ``} ` `    ``if` `(p == NULL) ` `        ``cout << ``"Tag ID doesn't exist\n"``; ` `    ``else` `if` `(p == alloc_head) ` `        ``alloc_head = alloc_head->next; ` `    ``else` `        ``q->next = p->next; ` `    ``struct` `free``* temp = free_head; ` `    ``while` `(temp != NULL) { ` `        ``if` `(temp->tag == p->block_id) { ` `            ``temp->size += p->size; ` `            ``break``; ` `        ``} ` `        ``temp = temp->next; ` `    ``} ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `blockSize[] = { 100, 500, 200 }; ` `    ``int` `processSize[] = { 417, 112, 426, 95 }; ` `    ``int` `m = ``sizeof``(blockSize) ` `            ``/ ``sizeof``(blockSize); ` `    ``int` `n = ``sizeof``(processSize) ` `            ``/ ``sizeof``(processSize); ` ` `  `    ``for` `(``int` `i = 0; i < m; i++) ` `        ``create_free(blockSize[i]); ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``create_alloc(processSize[i]); ` ` `  `    ``print_alloc(); ` ` `  `    ``// Block of tag id 0 deleted ` `    ``// to free space for block of size 426 ` `    ``delete_alloc(0); ` ` `  `    ``create_alloc(426); ` `    ``cout << ``"After deleting block"` `         ``<< ``" with tag id 0.\n"``; ` `    ``print_alloc(); ` `} `

Output:

```Block of size 426 can't be allocated
Tag    Block ID    Size
0      1        417
1      2        112
2      0        95
After deleting block with tag id 0.
Tag    Block ID    Size
1      2        112
2      0        95
3      1        426
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.