Related Articles

Related Articles

First element of every K sets having consecutive elements with exactly K prime factors less than N
  • Last Updated : 22 Sep, 2020

Given two integers N and K, the task is to find the first element for every set of K consecutive elements which have exactly K prime factors and are less than N.

Examples: 

Input: N = 30, K = 2 
Output: 14 20 21 
Explanation: 
Numbers which have prime factors equals to 2 less than 30 = { 14, 15, 18, 20, 21, 22, 24, 26, 28 }. 
In the above examples, for K = 2 (14, 15) (20, 21) (21, 22) only forms such sets and therefore the series is 14, 20, 21.

Input: N = 1000, K = 3 
Output: 644 740 804 986 
 

Naive Approach: The naive approach is to iterate from 2 to N and check that every K consecutive number forms a set having K prime factors for each element in the set. If “Yes” then print the first element of this set and check for next K elements.
Time Complexity: O(N*K) 
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by precomputing the number of prime factors till N and check for every K consecutive elements count having K prime factors. Below are the steps:



  1. Create a smallest prime factor array spf[] which stores the smallest prime factors for every number till N using Sieve of Eratosthenes.
  2. Using the above step, count the number of prime factors till each number N
  3. Store the number in the array(say result[]) whose count of prime factor is K.
  4. For each element of the array result[] check if there exists K consecutive numbers then print the first element of K consecutive numbers.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include <bits/stdc++.h>
#define x 2000021
using namespace std;
  
// For storing smallest prime factor
long long int v[x];
  
// Function construct smallest
// prime factor array
void sieve()
{
    v[1] = 1;
  
    // Mark smallest prime factor for
    // every number to be itself.
    for (long long int i = 2; i < x; i++)
        v[i] = i;
  
    // separately mark spf for every even
    // number as 2
    for (long long int i = 4; i < x; i += 2)
        v[i] = 2;
  
    for (long long int i = 3; i * i < x; i++) {
  
        // Check if i is prime
        if (v[i] == i) {
  
            // Mark SPF for all numbers
            // divisible by i
            for (long long int j = i * i;
                 j < x; j += i) {
  
                // Mark spf[j] if it is
                // not previously marked
                if (v[j] == j) {
                    v[j] = i;
                }
            }
        }
    }
}
  
// Function for counts total number
// of prime factors
long long int prime_factors(long long n)
{
    set<long long int> s;
  
    while (n != 1) {
        s.insert(v[n]);
        n = n / v[n];
    }
    return s.size();
}
  
// Function to print elements of sets
// of K consecutive elements having
// K prime factors
void distinctPrimes(long long int m,
                    long long int k)
{
  
    // To store the result
    vector<long long int> result;
    for (long long int i = 14;
         i < m + k; i++) {
  
        // Count number of prime
        // factors of number
        long long count
            = prime_factors(i);
  
        // If number has exactly K
        // factors push in result[]
        if (count == k) {
            result.push_back(i);
        }
    }
  
    long long int p = result.size();
  
    for (long long int index = 0;
         index < p - 1; index++) {
  
        long long element = result[index];
        long long count = 1, z = index;
  
        // Iterate till we get K consecutive
        // elements in result[]
        while (z < p - 1 && count <= k
               && result[z] + 1
                      == result[z + 1]) {
  
            // Count sequence until K
            count++;
            z++;
        }
  
        // Print the element if count >= K
        if (count >= k)
            cout << element << ' ';
    }
}
  
// Driver Code
int main()
{
    // To construct spf[]
    sieve();
  
    // Given N and K
    long long int N = 1000, K = 3;
  
    // Function Call
    distinctPrimes(N, K);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
      
static final int x = 2000021
      
// For storing smallest prime factor
static int []v = new int[x];
  
// Function consmallest
// prime factor array
static void sieve()
{
    v[1] = 1;
  
    // Mark smallest prime factor for
    // every number to be itself.
    for(int i = 2; i < x; i++)
        v[i] = i;
  
    // Separately mark spf for every even
    // number as 2
    for(int i = 4; i < x; i += 2)
        v[i] = 2;
  
    for(int i = 3; i * i < x; i++)
    {
          
        // Check if i is prime
        if (v[i] == i) 
        {
  
            // Mark SPF for all numbers
            // divisible by i
            for(int j = i * i; j < x; j += i) 
            {
                  
                // Mark spf[j] if it is
                // not previously marked
                if (v[j] == j) 
                {
                    v[j] = i;
                }
            }
        }
    }
}
  
// Function for counts total number
// of prime factors
static int prime_factors(int n)
{
    HashSet<Integer> s = new HashSet<Integer>();
  
    while (n != 1)
    {
        s.add(v[n]);
        n = n / v[n];
    }
      
    return s.size();
}
  
// Function to print elements of sets
// of K consecutive elements having
// K prime factors
static void distinctPrimes(int m, int k)
{
      
    // To store the result
    Vector<Integer> result = new Vector<Integer>();
    for (int i = 14; i < m + k; i++)
    {
          
        // Count number of prime
        // factors of number
        long count = prime_factors(i);
  
        // If number has exactly K
        // factors push in result[]
        if (count == k)
        {
            result.add(i);
        }
    }
  
    int p = result.size();
    for(int index = 0
            index < p - 1; index++)
    {
          
        long element = result.get(index);
        int count = 1, z = index;
  
        // Iterate till we get K consecutive
        // elements in result[]
        while (z < p - 1 && count <= k && 
                     result.get(z) + 1 == 
                     result.get(z + 1)) 
        {
              
            // Count sequence until K
            count++;
            z++;
        }
          
        // Print the element if count >= K
        if (count >= k)
            System.out.print(element + " ");
    }
}
  
// Driver code
public static void main(String[] args)
{
      
    // To construct spf[]
    sieve();
  
    // Given N and K
    int N = 1000, K = 3;
  
    // Function call
    distinctPrimes(N, K);
}
}
  
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
x = 2000021
  
# For storing smallest prime factor
v = [0] * x
  
# Function construct smallest 
# prime factor array 
def sieve():
  
    v[1] = 1
  
    # Mark smallest prime factor for
    # every number to be itself
    for i in range(2, x):
        v[i] =
  
    # separately mark spf for every
    # even number as 2
    for i in range(4, x, 2):
        v[i] = 2
  
    i = 3
    while (i * i < x):
  
        # Check if i is prime
        if (v[i] == i):
  
            # Mark SPF for all numbers
            # divisible by i
            for j in range(i * i, x, i):
  
                # Mark spf[i] if it is 
                # not previously marked
                if (v[j] == j):
                    v[j] = i
  
        i += 1
  
# Function for counts total number 
# of prime factors 
def prime_factors(n):
  
    s = set()
  
    while (n != 1):
        s.add(v[n])
        n = n // v[n]
  
    return len(s)
  
# Function to print elements of sets 
# of K consecutive elements having 
# K prime factors 
def distinctPrimes(m, k):
  
    # To store the result
    result = []
  
    for i in range(14, m + k):
  
        # Count number of prime
        # factors of number
        count = prime_factors(i)
  
        # If number has exactly K
        # factors puch in result[]
        if (count == k):
            result.append(i)
  
    p = len(result)
  
    for index in range(p - 1):
        element = result[index]
        count = 1
        z = index
  
        # Iterate till we get K consecutive
        # elements in result[]
        while (z < p - 1 and count <= k and 
               result[z] + 1 == result[z + 1]):
  
            # Count sequence until K
            count += 1
            z += 1
  
        # Print the element if count >= K
        if (count >= k):
            print(element, end = ' ')
  
# Driver Code
if __name__ == '__main__':
      
    # To construct spf[]
    sieve()
  
    # Given N and K
    N = 1000
    K = 3
  
    # Function call
    distinctPrimes(N, K)
  
# This code is contributed by himanshu77

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
      
static readonly int x = 2000021; 
      
// For storing smallest prime factor
static int []v = new int[x];
  
// Function consmallest
// prime factor array
static void sieve()
{
    v[1] = 1;
  
    // Mark smallest prime factor for
    // every number to be itself.
    for(int i = 2; i < x; i++)
        v[i] = i;
  
    // Separately mark spf for every even
    // number as 2
    for(int i = 4; i < x; i += 2)
        v[i] = 2;
  
    for(int i = 3; i * i < x; i++)
    {
          
        // Check if i is prime
        if (v[i] == i) 
        {
  
            // Mark SPF for all numbers
            // divisible by i
            for(int j = i * i; j < x; j += i) 
            {
                  
                // Mark spf[j] if it is
                // not previously marked
                if (v[j] == j) 
                {
                    v[j] = i;
                }
            }
        }
    }
}
  
// Function for counts total number
// of prime factors
static int prime_factors(int n)
{
    HashSet<int> s = new HashSet<int>();
  
    while (n != 1)
    {
        s.Add(v[n]);
        n = n / v[n];
    }
    return s.Count;
}
  
// Function to print elements of sets
// of K consecutive elements having
// K prime factors
static void distinctPrimes(int m, int k)
{
      
    // To store the result
    List<int> result = new List<int>();
    for (int i = 14; i < m + k; i++)
    {
          
        // Count number of prime
        // factors of number
        long count = prime_factors(i);
  
        // If number has exactly K
        // factors push in result[]
        if (count == k)
        {
            result.Add(i);
        }
    }
  
    int p = result.Count;
    for(int index = 0; 
            index < p - 1; index++)
    {
        long element = result[index];
        int count = 1, z = index;
  
        // Iterate till we get K consecutive
        // elements in result[]
        while (z < p - 1 && count <= k && 
               result[z] + 1 == result[z + 1]) 
        {
              
            // Count sequence until K
            count++;
            z++;
        }
          
        // Print the element if count >= K
        if (count >= k)
            Console.Write(element + " ");
    }
}
  
// Driver code
public static void Main(String[] args)
{
      
    // To construct spf[]
    sieve();
  
    // Given N and K
    int N = 1000, K = 3;
  
    // Function call
    distinctPrimes(N, K);
}
}
  
// This code is contributed by Amit Katiyar 

chevron_right


Output: 

644 740 804 986

Time Complexity: O(N*log(log N)) 
Auxiliary Space: O(N)
 

competitive-programming-img




My Personal Notes arrow_drop_up
Recommended Articles
Page :