# First collision point of two series

Given five numbers a, b, c, d and n (where a, b, c, d, n > 0). These values represent n terms of two series. The two series formed by these four numbers are b, b+a, b+2a….b+(n-1)a and d, d+c, d+2c, ….. d+(n-1)c
These two series will collide when at any single point summation values becomes exactly the same for both the series.Print the collision point.

```Example:
Input : a = 20, b = 2,
c = 9, d = 19,
n = 100
Output: 82
Explanation:
Series1 = (2, 22, 42, 62, 82, 102...)
Series2 = (28, 37, 46, 55, 64, 73, 82, 91..)
So the first collision point is 82.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A naive approach is to calculate both the series in two different arrays, and then check for each element if it collides by running two nested loops

Time complexity: O(n * n)
Auxiliary Space: O(n)

An efficient Approach to the problem mentioned above is:

* Generate all elements of first series. Let current element be x.
* If x is also an element of second series, then following conditions should satisfy.
…..a) x should be greater than or equal to first element of second series.
…..a) Difference between x and first element should be divisible by c.
*If the above conditions are satisfied then the i-th value is the required meeting point.

Below is the implementation of the above problem :

## C++

 `// CPP program to calculate the colliding ` `// point of two series ` `#include ` `using` `namespace` `std; ` ` `  ` `  `void` `point(``int` `a, ``int` `b, ``int` `c, ``int` `d, ``int` `n) ` `{ ` `    ``int` `x , flag = 0; ` ` `  `    ``// Iterating through n terms of the  ` `    ``// first series ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `         `  `        ``// x is i-th term of first series ` `        ``x = b + i * a;      ` `         `  `        ``// d is first element of second ` `        ``// series and c is common difference ` `        ``// for second series. ` `        ``if` `((x - d) % c == 0 and x - d >= 0) ` `        ``{ ` `            ``cout << x << endl ; ` `            ``flag = 1; ` `            ``break``; ` `        ``} ` `     `  `    ``} ` ` `  `    ``// If no term of first series is found      ` `    ``if``(flag == 0) ` `    ``{ ` `            ``cout << ``"No collision point"` `<< endl; ` `    ``} ` ` `  `     `  `}  ` `     `  ` `  `// Driver function ` `int` `main() ` `{ ` `    ``int` `a = 20 ; ` `    ``int` `b = 2 ; ` `    ``int` `c = 9; ` `    ``int` `d = 19; ` `    ``int` `n = 20; ` `    ``point(a, b, c, d, n); ` `    ``return` `0; ` `} ` ` `  `// This code is contributed by  'saloni1297'. `

## Java

 `// Java program to calculate the colliding ` `// point of two series ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `    ``static` `void` `point(``int` `a, ``int` `b, ``int` `c, ``int` `d, ``int` `n) ` `    ``{ ` `        ``int` `x , flag = ``0``; ` ` `  `        ``// Iterating through n terms of the  ` `        ``// first series ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``{ ` `             `  `            ``// x is i-th term of first series ` `            ``x = b + i * a;  ` `             `  `            ``// d is first element of second ` `            ``// series and c is common difference ` `            ``// for second series. ` `            ``if` `((x - d) % c == ``0` `&& x - d >= ``0``) ` `            ``{ ` `                ``System.out.println( x ) ; ` `                ``flag = ``1``; ` `                ``break``; ` `            ``} ` `         `  `        ``} ` `     `  `        ``// If no term of first series is found  ` `        ``if``(flag == ``0``) ` `        ``{ ` `            ``System.out.println (``"No collision point"``); ` `        ``} ` `     `  `         `  `    ``}  ` `         `  `     `  `    ``// Driver function ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `a = ``20` `; ` `        ``int` `b = ``2` `; ` `        ``int` `c = ``9``; ` `        ``int` `d = ``19``; ` `        ``int` `n = ``20``; ` `        ``point(a, b, c, d, n);    ` `     `  `    ``} ` `} ` `// This code is contributed by vt_m `

## Python

 `# Function to calculate the colliding point ` `# of two series ` `def` `point(a, b, c, d, n): ` ` `  `    ``# Iterating through n terms of the  ` `    ``# first series ` `    ``for` `i ``in` `range``(n): ` `         `  `        ``# x is i-th term of first series ` `        ``x ``=` `b ``+` `i``*``a      ` `         `  `        ``# d is first element of second ` `        ``# series and c is common difference ` `        ``# for second series. ` `        ``if` `(x``-``d)``%``c ``=``=` `0` `and` `x``-``d >``=` `0``: ` `            ``print` `x  ` `            ``return` ` `  `    ``# If no term of first series is found       ` `    ``else``: ` `        ``print` `"No collision point"`     `    `  ` `  `# Driver code ` `a ``=` `20` `b ``=` `2` `c ``=` `9` `d ``=` `19` `n ``=` `20` `point(a, b, c, d, n) `

## C#

 `// C# program to calculate the colliding ` `// point of two series ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``static` `void` `point(``int` `a, ``int` `b, ``int` `c, ` `                             ``int` `d, ``int` `n) ` `    ``{ ` `        ``int` `x, flag = 0; ` ` `  `        ``// Iterating through n terms of the ` `        ``// first series ` `        ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `            ``// x is i-th term of first series ` `            ``x = b + i * a; ` ` `  `            ``// d is first element of second ` `            ``// series and c is common difference ` `            ``// for second series. ` `            ``if` `((x - d) % c == 0 && x - d >= 0) { ` `                ``Console.WriteLine(x); ` `                ``flag = 1; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// If no term of first series is found ` `        ``if` `(flag == 0) { ` `            ``Console.WriteLine(``"No collision point"``); ` `        ``} ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `a = 20; ` `        ``int` `b = 2; ` `        ``int` `c = 9; ` `        ``int` `d = 19; ` `        ``int` `n = 20; ` `        ``point(a, b, c, d, n); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m `

## PHP

 `= 0) ` `        ``{ ` `            ``echo` `\$x``; ` `            ``\$flag` `= 1; ` `            ``break``; ` `        ``} ` `     `  `    ``} ` ` `  `    ``// If no term of first  ` `    ``// series is found  ` `    ``if``(``\$flag` `== 0) ` `    ``{ ` `            ``echo` `"No collision po\$"``; ` `    ``} ` ` `  `     `  `}  ` `     `  `    ``// Driver Code ` `    ``\$a` `= 20 ; ` `    ``\$b` `= 2 ; ` `    ``\$c` `= 9; ` `    ``\$d` `= 19; ` `    ``\$n` `= 20; ` `    ``point(``\$a``, ``\$b``, ``\$c``, ``\$d``, ``\$n``); ` ` `  `// This code is contributed by anuj_67. ` `?> `

Output :

```82
```

Time complexity : O(n)

This article is contributed by Twinkle Bajaj. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : vt_m

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.