Skip to content
Related Articles

Related Articles

Finding the Inverse Hyperbolic Cosine of Complex Number in Golang
  • Last Updated : 27 Mar, 2020

Go language provides inbuilt support for basic constants and mathematical functions for complex numbers with the help of the cmplx package. You are allowed to find the inverse hyperbolic cosine of the specified complex number with the help of Acosh() function provided by the math/cmplx package. So, you need to add a math/cmplx package in your program with the help of the import keyword to access the Acosh() function.

Syntax:

func Acosh(x complex128) complex128

Let us discuss this concept with the help of the given examples:

Example 1:




// Golang program to illustrate how to find the
// Inverse Hyperbolic Cosine of Complex Number
package main
  
import (
    "fmt"
    "math/cmplx"
)
  
// Main function
func main() {
  
    // Finding inverse hyperbolic cosine
    // of the specified complex number
    // Using Acosh() function
    res_1 := cmplx.Acosh(2 + 5i)
    res_2 := cmplx.Acosh(-9 + 8i)
    res_3 := cmplx.Acosh(-5 - 7i)
  
    // Displaying the result
    fmt.Println("Result 1:", res_1)
    fmt.Println("Result 2:", res_2)
    fmt.Println("Result 3:", res_3)
}

Output:



Result 1: (2.3830308809003298+1.1961255219693694i)
Result 2: (3.181316253686062+2.4132370433090795i)
Result 3: (2.8462888282083862-2.18786062347089i)

Example 2 :




// Golang program to illustrate how to find the
// Inverse Hyperbolic Cosine of Complex Number
  
package main
  
import (
    "fmt"
    "math/cmplx"
)
  
// Main function
func main() {
  
    cnumber_1 := complex(2, 3)
    cnumber_2 := complex(6, 8)
  
    // Finding inverse hyperbolic cosine
    cvalue_1 := cmplx.Acosh(cnumber_1)
    cvalue_2 := cmplx.Acosh(cnumber_2)
  
    // Sum of two inverse hyperbolic cosine values
    res := cvalue_1 + cvalue_2
  
    // Displaying results
    fmt.Println("Complex Number 1: ", cnumber_1)
    fmt.Println("Inverse hyperbolic cosine 1: ", cvalue_1)
  
    fmt.Println("Complex Number 2: ", cnumber_2)
    fmt.Println("Inverse hyperbolic cosine 2: ", cvalue_2)
    fmt.Println("Sum of inverse hyperbolic cosines : ", res)
  
}

Output:

Complex Number 1:  (2+3i)
Inverse hyperbolic cosine 1:  (1.9833870299165355+1.0001435424737974i)
Complex Number 2:  (6+8i)
Inverse hyperbolic cosine 2:  (2.9964401392355113+0.9296901439918359i)
Sum of inverse hyperbolic cosines :  (4.979827169152047+1.9298336864656334i)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :