Finding the Inverse Hyperbolic Cosine of Complex Number in Golang
Go language provides inbuilt support for basic constants and mathematical functions for complex numbers with the help of the cmplx package. You are allowed to find the inverse hyperbolic cosine of the specified complex number with the help of Acosh() function provided by the math/cmplx package. So, you need to add a math/cmplx package in your program with the help of the import keyword to access the Acosh() function.
Syntax:
func Acosh(x complex128) complex128
Let us discuss this concept with the help of the given examples:
Example 1:
// Golang program to illustrate how to find the // Inverse Hyperbolic Cosine of Complex Number package main import ( "fmt" "math/cmplx" ) // Main function func main() { // Finding inverse hyperbolic cosine // of the specified complex number // Using Acosh() function res_1 := cmplx.Acosh(2 + 5i) res_2 := cmplx.Acosh(-9 + 8i) res_3 := cmplx.Acosh(-5 - 7i) // Displaying the result fmt.Println( "Result 1:" , res_1) fmt.Println( "Result 2:" , res_2) fmt.Println( "Result 3:" , res_3) } |
Output:
Result 1: (2.3830308809003298+1.1961255219693694i) Result 2: (3.181316253686062+2.4132370433090795i) Result 3: (2.8462888282083862-2.18786062347089i)
Example 2 :
// Golang program to illustrate how to find the // Inverse Hyperbolic Cosine of Complex Number package main import ( "fmt" "math/cmplx" ) // Main function func main() { cnumber_1 := complex(2, 3) cnumber_2 := complex(6, 8) // Finding inverse hyperbolic cosine cvalue_1 := cmplx.Acosh(cnumber_1) cvalue_2 := cmplx.Acosh(cnumber_2) // Sum of two inverse hyperbolic cosine values res := cvalue_1 + cvalue_2 // Displaying results fmt.Println( "Complex Number 1: " , cnumber_1) fmt.Println( "Inverse hyperbolic cosine 1: " , cvalue_1) fmt.Println( "Complex Number 2: " , cnumber_2) fmt.Println( "Inverse hyperbolic cosine 2: " , cvalue_2) fmt.Println( "Sum of inverse hyperbolic cosines : " , res) } |
Output:
Complex Number 1: (2+3i) Inverse hyperbolic cosine 1: (1.9833870299165355+1.0001435424737974i) Complex Number 2: (6+8i) Inverse hyperbolic cosine 2: (2.9964401392355113+0.9296901439918359i) Sum of inverse hyperbolic cosines : (4.979827169152047+1.9298336864656334i)
Please Login to comment...