Skip to content
Related Articles

Related Articles

Finding the Hyperbolic Tangent of Complex Number in Golang
  • Last Updated : 01 Apr, 2020

Go language provides inbuilt support for basic constants and mathematical functions for complex numbers with the help of the cmplx package. You are allowed to find the hyperbolic tangent of the specified complex number with the help of Tanh() function provided by the math/cmplx package. So, you need to add a math/cmplx package in your program with the help of the import keyword to access the Tanh() function.

Syntax:

func Tanh(y complex128) complex128

Let us discuss this concept with the help of the given examples:

Example 1 :




// Golang program to illustrate how to find the
// hyperbolic tangent of the specified complex
// number
  
package main
  
import (
    "fmt"
    "math/cmplx"
)
  
// Main function
func main() {
  
    // Finding hyperbolic tangent of 
    // the specified complex number
    // Using Tanh() function
    res_1 := cmplx.Tanh(1 + 5i)
    res_2 := cmplx.Tanh(-2 + 8i)
    res_3 := cmplx.Tanh(-1 - 2i)
  
    // Displaying the result
    fmt.Println("Result 1: ", res_1)
    fmt.Println("Result 2: ", res_2)
    fmt.Println("Result 3: ", res_3)
}

Output:



Result 1:  (1.2407479829240697-0.1861094776473042i)
Result 2:  (-1.0356479469632376-0.010925884335752532i)
Result 3:  (-1.16673625724092+0.24345820118572523i)

Example 2 :




// Golang program to illustrate how to find the
// hyperbolic tangent of the specified complex
// number
  
package main
  
import (
    "fmt"
    "math/cmplx"
)
  
// Main function
func main() {
  
    cnumber_1 := complex(0, 2)
    cnumber_2 := complex(4, 6)
  
    // Finding hyperbolic tangent
    cvalue_1 := cmplx.Tanh(cnumber_1)
    cvalue_2 := cmplx.Tanh(cnumber_2)
  
    // Sum of two hyperbolic tangent values
    res := cvalue_1 + cvalue_2
  
    // Displaying results
    fmt.Println("Complex Number 1: ", cnumber_1)
    fmt.Println("Hyperbolic tangent 1: ", cvalue_1)
  
    fmt.Println("Complex Number 2: ", cnumber_2)
    fmt.Println("Hyperbolic tangent 2: ", cvalue_2)
    fmt.Println("Sum : ", res)
  
}

Output:

Complex Number 1:  (0+2i)
Hyperbolic tangent 1:  (0-2.185039863261519i)
Complex Number 2:  (4+6i)
Hyperbolic tangent 2:  (0.9994339325466381-0.0003597965782916252i)
Sum :  (0.9994339325466381-2.1853996598398107i)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :